
Hortonworks Data Platform

 (December 15, 2017)

Cloud Data Access

docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform December 15, 2017

ii

Hortonworks Data Platform: Cloud Data Access
Copyright © 2012-2017 Hortonworks, Inc. All rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform
page for more information on Hortonworks technology. For more information on Hortonworks services,
please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific
needs.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/support
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://www.apache.org/licenses/LICENSE-2.0

Hortonworks Data Platform December 15, 2017

iii

Table of Contents
1. About This Guide ... 1
2. Introducing the Cloud Storage Connectors ... 2
3. Getting Started with Amazon S3 ... 5

3.1. About Amazon S3 ... 5
3.1.1. Limitations of Amazon S3 .. 6

3.2. Configuring Authentication with S3 .. 6
3.2.1. Using Instance Metadata to Authenticate .. 7
3.2.2. Using Configuration Properties to Authenticate 8
3.2.3. Using Environment Variables to Authenticate ... 9
3.2.4. Embedding Credentials in the URL to Authenticate 9
3.2.5. Defining Authentication Providers .. 9

3.3. Referencing S3 in the URLs ... 14
3.4. Configuring Per-Bucket Settings ... 14

3.4.1. Configuring Per-Bucket Settings to Access Data Around the World 16
3.5. A List of S3A Configuration Properties .. 18
3.6. Encrypting Data on S3 .. 22

3.6.1. SSE-S3: Amazon S3-Managed Encryption Keys 23
3.6.2. SSE-KMS: Amazon S3-KMS Managed Encryption Keys 23
3.6.3. SSE-C: Server-Side Encryption with Customer-Provided Encryption
Keys ... 25
3.6.4. Configuring Encryption for Specific Buckets .. 25
3.6.5. Mandating Encryption for an S3 Bucket .. 26
3.6.6. Performance Impact of Encryption ... 27

3.7. Improving Performance for S3 ... 27
3.7.1. Improving DistCp Performance with S3 ... 28
3.7.2. Improving Container Allocation Performance for S3 33
3.7.3. Optimizing HTTP Get Requests for S3 ... 33
3.7.4. Improving Load-Balancing Behavior for S3 .. 34

3.8. Troubleshooting S3 ... 35
3.8.1. Authentication Failures ... 35
3.8.2. Classpath Related Errors ... 37
3.8.3. Connectivity Problems .. 38
3.8.4. Errors During Delete or Rename of Files ... 41
3.8.5. Errors Related to Visible S3A Inconsistency .. 41
3.8.6. Troubleshooting S3-SSE .. 42

4. Getting Started with ADLS ... 45
4.1. Configuring Authentication with ADLS .. 45

4.1.1. Using Client Credential ... 46
4.1.2. Using Token-Based Authentication ... 48
4.1.3. Protecting the Azure Credentials for ADLS with Credential Providers 48

4.2. Referencing ADLS in the URLs ... 49
4.3. Configuring User and Group Representation ... 49

5. Getting Started with WASB ... 51
5.1. Configuring Authentication with WASB ... 51

5.1.1. Protecting the Azure Credentials for WASB with Credential
Providers .. 52

5.2. Referencing WASB in the URLs .. 53
5.3. Configuring Page Blob Support ... 54

Hortonworks Data Platform December 15, 2017

iv

5.4. Configuring Atomic Folder Rename ... 54
5.5. Configuring Support for Append API .. 55
5.6. Configuring Multithread Support .. 55
5.7. Configuring WASB Secure Mode ... 56
5.8. Configuring Authorization Support in WASB ... 57

6. Accessing Cloud Data in Hive ... 58
6.1. Exposing Cloud Data as Hive Tables .. 58
6.2. Populating Partition-Related Information .. 59
6.3. Analyzing Tables ... 59
6.4. Improving Hive Performance with S3/ADLS/WASB .. 60

7. Accessing Cloud Data in Spark ... 62
7.1. Committing Output to S3 .. 63
7.2. Improving Spark Performance with S3/ADLS/WASB .. 63

7.2.1. Accelerating ORC and Parquet Reads .. 63
7.2.2. Accelerating Sequential Reads Through Files in S3 64

8. Copying Cloud Data with Hadoop .. 65
8.1. Copying Data with DistCp ... 65

8.1.1. Improving Performance for DistCp .. 67
8.1.2. Local Space Requirements for Copying to S3 ... 67
8.1.3. Limitations When Using DistCp with S3 ... 67

8.2. Running FS Shell Commands ... 68
8.2.1. Commands That May Be Slower with S3 ... 69
8.2.2. Operations Unsupported for S3 .. 70
8.2.3. Deleting Objects on S3 ... 70
8.2.4. Overwriting Objects on S3 .. 71
8.2.5. Timestamps on S3 .. 71
8.2.6. Security Model and Operations on S3 ... 71

Hortonworks Data Platform December 15, 2017

v

List of Figures
2.1. HDP Cloud Storage Connector Architecture ... 3

Hortonworks Data Platform December 15, 2017

vi

List of Tables
2.1. Cloud Storage Connectors ... 3
3.1. Authentication Options for Different Deployment Scenarios 7
3.2. S3A Fast Upload Configuration Options .. 30
3.3. S3A Fast Upload Tuning Options ... 32
6.1. Improving General Performance .. 60
6.2. Accelerating ORC Reads in Hive .. 60
6.3. Accelerating ETL Jobs .. 60

Hortonworks Data Platform December 15, 2017

1

1. About This Guide
The goal of this guide is to provide information and steps required for configuring, using,
securing, tuning performance, and troubleshooting access to the cloud storage services
using HDP cloud storage connectors available for Amazon Web Services (Amazon S3) and
Microsoft Azure (ADLS, WASB).

The primary audience of this guide are the administrators and users of HDP deployed on
cloud Infrastructure-as-a-Service (IaaS) such as Amazon Web Services (AWS) or Microsoft
Azure. You may also use this guide if your HDP is deployed in your own data center
and you plan to access cloud storage via the connectors; however, your experience and
performance may vary based on the network bandwidth between your data center and
the cloud storage service.

To learn about the architecture of the cloud connectors, refer to Introducing the Cloud
Storage Connectors.

In order to start working with data stored in a cloud storage service, you must configure
authentication with the service. In addition, you can optionally configure other features
where available. To get started with your chosen cloud storage service, refer to:

• Getting Started with Amazon S3 [5]

• Getting Started with ADLS [45]

• Getting Started with WASB [51]

Once you have configured authentication with the chosen cloud storage service, you can
start working with the data. To get started, refer to:

• Accessing Cloud Data in Hive [58]

• Accessing Cloud Data in Spark [62]

• Copying Cloud Data with Hadoop [65]

Hortonworks Data Platform December 15, 2017

2

2. Introducing the Cloud Storage
Connectors

When deploying HDP clusters on AWS or Azure cloud IaaS, you can take advantage of the
native integration with the cloud object storage services available on each of the cloud
platforms: Amazon S3 on AWS, and ADLS and WASB on Azure. This integration is via
cloud storage connectors included with HDP. Their primary function is to help you connect
to, access, and work with data the cloud storage services. These connectors are not a
replacement for HDFS and cannot be used as a replacement for HDFS defaultFS.

The cloud connectors allow you to seamlessly access and work with data stored in Amazon
S3, Azure ADLS and Azure WASB storage services, including, but not limited to, the
following use cases:

• Collect data for analysis and then load it into Hadoop ecosystem applications such as
Hive or Spark directly from cloud storage services.

• Persist data to cloud storage services for use outside of HDP clusters.

• Copy data stored in cloud storage services to HDFS for analysis and then copy back to the
cloud when done.

• Share data between multiple HDP clusters – and between various external non-HDP
systems – by pointing at the same data sets in the cloud object stores.

The S3A, ADLS and WASB connectors are implemented as individual Hadoop modules. The
libraries and their dependencies are automatically placed on the classpath.

Hortonworks Data Platform December 15, 2017

3

Figure 2.1. HDP Cloud Storage Connector Architecture

Amazon S3 is an object store. The S3A connector implements the Hadoop filesystem
interface using WWS Java SDK to access the web service, and provides Hadoop applications
with a filesystem view of the buckets. Applications can seamlessly manipulate data stored in
Amazon S3 buckets with an URL starting with the s3a:// prefix.

Azure WASB is an object store with a flat name architecture (flat name space). The WASB
connector implements the Hadoop filesystem interface using WASB Java SDK to access
the web service, and provides Hadoop applications with a filesystem view of the blobs.
Applications can seamlessly manipulate data stored in WASB with an URL starting with the
wasb:// prefix.

Azure ADLS is a WebHDFS-compatible hierarchical file system. Applications can access
the data in ADLS directly using WebHDFS REST API. Meanwhile, the ADLS connector
implements the Hadoop filesystem interface using ADLS Java SDK to access the web service.
Applications can manipulate data stored in ADLS with the URL starting with the adl://
prefix.

Table 2.1. Cloud Storage Connectors

Cloud Storage Service Connector Description URL Prefix

Amazon Simple Storage Service (S3) The S3A connector enables reading
and writing files stored in the Amazon
S3 object store.

s3a://

Azure Data Lake Store (ADLS) The ADLS connector enables reading
and writing files stored in the ADLS
file system.

adl://

Windows Azure Storage Blob (WASB) The WASB connector enables reading
and writing both block blobs and
page blobs from and to WASB object
store.

wasb://

Hortonworks Data Platform December 15, 2017

4

The cluster's default filesystem HDFS is defined in the configuration property
fs.defaultFS in core-site.xml. As a result, when running FS shell commands or
DistCp against HDFS, you can but do not need to specify the hdfs:// URL prefix:

hadoop distcp hdfs://source-folder s3a://destination-bucket

hadoop distcp /source-folder s3a://destination-bucket

When working with the cloud using cloud URIs do not change the value of
fs.defaultFS to use a cloud storage connector as the filesystem for HDFS. This is not
recommended or supported. Instead, when working with data stored in S3, ADLS, or
WASB, use a fully qualified URL for that connector.

To get started with your chosen cloud storage service, refer to:

• Getting Started with Amazon S3 [5]

• Getting Started with ADLS [45]

• Getting Started with WASB [51]

Hortonworks Data Platform December 15, 2017

5

3. Getting Started with Amazon S3
The following table provides an overview of tasks related to configuring and using HDP
with S3. Click on the linked topics to get more information about specific tasks.

Note

If you are looking for data sets to play around, you can use Landsat 8 data sets
made available by AWS in a public Amazon S3 bucket called "landsat-pds". For
more information, refer to Landsat on AWS.

Task Description

Meet the prerequisites To use S3 storage, you must have:

1. An AWS account.

2. One or more S3 buckets on your AWS account. For instructions
on how to create a bucket on S3, refer to AWS documentation.

Configure authentication In order for Hadoop applications to access data stored in your
private S3 buckets, you must configure authentication with your
Amazon S3 account.

Configure optional features:

• Configuring Per-Bucket Settings [14]

• A List of S3A Configuration Properties [18]

You can optionally configure additional features such as bucket-
specific settings.

Work with S3 data:

• Referencing S3 in the URLs [14]

• Access data with Hive or Spark

• Copy data with DistCp

Once you've configured authentication with your S3 bucket(s), you
can access S3 data from Hive (via external tables) and Spark, and
perform related tasks such as copying data between HDFS and S3
when needed.

Encrypting Data on S3 [22] You can optionally work with S3 data that is protected with server-
side encryption: SSE-S3, SSE-KMS, or SSE-C.

Improving Performance for S3 [27] You can optionally configure and fine-tune performance-related
features to optimize HDP performance for specific tasks including
accessing S3 data from Hive, Spark, and copying data with DistCp.

Troubleshoot Refer to this section if you experience issues while configuring or
using S3 with HDP.

3.1. About Amazon S3
Amazon S3 object store is the standard mechanism to store, retrieve, and share large
quantities of data in AWS.

The features of Amazon S3 include:

• Object store model for storing, listing, and retrieving data.

• Support for objects up to 5 terabytes, with many petabytes of data allowed in a single
bucket.

• Data is stored in Amazon S3 in buckets which are stored in different AWS regions.

• Buckets can restricted to different users or IAM roles.

https://aws.amazon.com/public-data-sets/landsat/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Hortonworks Data Platform December 15, 2017

6

• Data stored in an Amazon S3 bucket is billed based on the size of data and based on
how long it is stored. In addition, you are billed when you transfer data between regions:

• Data transfers between an Amazon S3 bucket and a cluster running in the same region
are free of download charges (except in the special case of buckets in which data is
served on a user-pays basis).

• Data downloaded from an Amazon S3 bucket located outside the region in which the
bucket is hosted is billed per megabyte.

• Data stored in Amazon S3 can be backed up with Amazon Glacier.

The Hadoop client to S3, called "S3A", makes the contents of a bucket appear like a
filesystem, with directories, files in the directories, and operations on directories and files.
As a result applications which can work with data stored in HDFS can also work with data
stored in S3. However, since S3 is an object store, it has certain limitations that you should
be aware of.

3.1.1. Limitations of Amazon S3

Even though Hadoop's S3A client can make an S3 bucket appear to be a Hadoop-
compatible filesystem, it is still an object store, and has some limitations when acting as a
Hadoop-compatible filesystem. The key things to be aware of are:

• Operations on directories are potentially slow and nonatomic.

• Not all file operations are supported. In particular, some file operations needed by
Apache HBase are not available — so HBase cannot be run on top of Amazon S3.

• Data is not visible in the object store until the entire output stream has been written.

• Amazon S3 is eventually consistent. Objects are replicated across servers for availability,
but changes to a replica take time to propagate to the other replicas; the object store is
inconsistent during this process. The inconsistency issues surface when listing, reading,
updating, or deleting files.

• Neither the per-file and per-directory permissions supported by HDFS nor its more
sophisticated ACL mechanism are supported.

• Bandwidth between your workload clusters and Amazon S3 is limited and can vary
significantly depending on network and VM load.

For these reasons, while Amazon S3 can be used as the source and store for persistent data,
it cannot be used as a direct replacement for a cluster-wide filesystem such as HDFS, or be
used as defaultFS.

3.2. Configuring Authentication with S3
For Apache Hadoop applications to be able to interact with Amazon S3, they must know
the AWS access key and the secret key. This can be achieved in three different ways:
through configuration properties, environment variables, or instance metadata. While the
first two options can be used when accessing S3 from a cluster running in your own data

https://aws.amazon.com/glacier/

Hortonworks Data Platform December 15, 2017

7

center. IAM roles, which use instance metadata should be used to control access to AWS
resources if your cluster is running on EC2.

Table 3.1. Authentication Options for Different Deployment Scenarios

Deployment Scenario Authentication Options

Cluster runs on EC2 Use IAM roles to control access to your AWS resources. If you
configure role-based access, instance metadata will automatically
be used to authenticate.

Cluster runs in your own data center Use configuration properties to authenticate. You can set the
configuration properties globally or per-bucket.

Temporary security credentials, also known as "session credentials", can be issued. These
consist of a secret key with a limited lifespan, along with a session token, another secret
which must be known and used alongside the access key. The secret key is never passed to
AWS services directly. Instead it is used to sign the URL and headers of the HTTP request.

By default, the S3A filesystem client follows the following authentication chain:

1. If login details were provided in the filesystem URI, a warning is printed and then
the username and password are extracted for the AWS key and secret respectively.
However, authenticating via embedding credentials in the URL is not recommended.
Instead, you may authenticate using per-bucket authentication credentials.

2. The fs.s3a.access.key and fs.s3a.secret.key are looked for in the Hadoop
configuration properties.

3. The AWS environment variables are then looked for.

4. An attempt is made to query the Amazon EC2 Instance Metadata Service to retrieve
credentials published to EC2 VMs.

3.2.1. Using Instance Metadata to Authenticate

If your cluster is running on EC2, the standard way to manage access is via Amazon Identity
and Access Management (IAM), which allows you to create users, groups, and roles to
control access to services such as Amazon S3 via attached policies. A role does not have any
credentials such as password or access keys associated with it. Instead, if a user is assigned
to a role, access keys are generated dynamically and provided to the user when needed.
For more information, refer to IAM Roles for Amazon EC2 in Amazon documentation.

When launching your cluster on EC2, specify an IAM role that you want to use; if you are
planning to use S3 with your cluster, make sure that the role associated with the cluster
includes a policy that grants access to S3. For more information, refer to Using an IAM
Role to Grant Permissions to Applications Running on Amazon EC2 Instances in Amazon
documentation. No additional configuration is required.

Note

You can use IAM Roles to control access to keys stored in Amazon's KMS Key
Management service. For more information, refer to Overview of Managing
Access to Your AWS KMS Resources in Amazon documentation.

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
http://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

Hortonworks Data Platform December 15, 2017

8

3.2.2. Using Configuration Properties to Authenticate

To configure authentication with S3, explicitly declare the credentials in a configuration file
such as core-site.xml:

<property>
 <name>fs.s3a.access.key</name>
 <value>ACCESS-KEY</value>
</property>

<property>
 <name>fs.s3a.secret.key</name>
 <value>SECRET-KEY</value>
</property>

If using AWS Session credentials for authentication, the secret key must be that of the
session, and the fs.s3a.session.token option set to your session token.

<property>
 <name>fs.s3a.session.token</name>
 <value>SESSION-TOKEN</value>
</property>

This configuration can be added for a specific bucket. For more information, refer to Using
Per-Bucket Credentials to Authenticate.

Next Steps

To protect these credentials, we recommend that you use the credential provider
framework to securely store and access your credentials.

To validate that you can successfully authenticate with S3, try referencing S3 in a URL.

3.2.2.1. Using Per-Bucket Credentials to Authenticate

S3A supports per-bucket configuration, which can be used to declare different
authentication credentials and authentication mechanisms for different buckets.

For example, a bucket s3a://nightly/ used for nightly data can be configured with a
session key:

<property>
 <name>fs.s3a.bucket.nightly.access.key</name>
 <value>AKAACCESSKEY-2</value>
</property>

<property>
 <name>fs.s3a.bucket.nightly.secret.key</name>
 <value>SESSIONSECRETKEY</value>
</property>

Similarly, you can set a session token for a specific bucket:

<property>
 <name>fs.s3a.bucket.nightly.session.token</name>
 <value>SESSION-TOKEN</value>
</property>

Hortonworks Data Platform December 15, 2017

9

This technique is useful for working with external sources of data, or when copying data
between buckets belonging to different accounts.

Related Links

Customizing Per-Bucket Secrets Held in Credential Files [13]

3.2.3. Using Environment Variables to Authenticate
AWS CLI supports authentication through environment variables. These same environment
variables will be used by Hadoop if no configuration properties are set.

The environment variables are:

Environment Variable Description

AWS_ACCESS_KEY_ID Access key

AWS_SECRET_ACCESS_KEY Secret key

AWS_SESSION_TOKEN Session token (only if using session authentication)

3.2.4. Embedding Credentials in the URL to Authenticate

Note

Embedding credentials in the URL is dangerous and deprecated. Due to the
security risk it represents, future versions of Hadoop may remove this feature
entirely. Use per-bucket configuration options instead.

Hadoop supports embedding credentials within the S3 URL:

s3a://key:secret@bucket-name/

In general, we strongly discourage using this mechanism, as it invariably results in the secret
credentials being logged in many places in the cluster. However, embedding credentials in
the URL is sometimes useful when troubleshooting authentication problems; consult the
troubleshooting documentation for details.

Before S3A supported per-bucket credentials, this was the sole mechanism for supporting
different credentials for different buckets. Now that buckets can be individually configured,
this mechanism should no longer be needed. You should use per-bucket configuration
options instead.

3.2.5. Defining Authentication Providers
The S3A connector can be configured to obtain client authentication
providers from classes which integrate with the AWS SDK by implementing
the com.amazonaws.auth.AWSCredentialsProvider interface. This
is done by listing the implementation classes in the configuration option
fs.s3a.aws.credentials.provider.

Note

AWS credential providers are distinct from Hadoop credential providers.
Hadoop credential providers allow passwords and other secrets to be stored

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-environment

Hortonworks Data Platform December 15, 2017

10

and transferred more securely than in XML configuration files. In contrast,
AWS credential providers are classes which can be used by the Amazon AWS
SDK to obtain an AWS login from a different source in the system, including
environment variables, JVM properties, and configuration files.

There are a number of AWS credential provider classes specified in the hadoop-aws JAR:

Classname Description

org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProviderStandard credential support through configuration
properties. It does not support in-URL authentication.

org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProviderSession authentication

org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProviderAnonymous login

Furthermore, there are many AWS credential provider classes specified in the Amazon JARs.
In particular, there are two which are commonly used:

Classname Description

com.amazonaws.auth.EnvironmentVariableCredentialsProviderAWS Environment Variables

com.amazonaws.auth.InstanceProfileCredentialsProviderEC2 Metadata Credentials

The order of listing credential providers in the configuration option
fs.s3a.aws.credentials.providerdefines the order of evaluation of credential
providers.

The standard authentication mechanism for Hadoop S3A authentication is the following list
of providers:

<property>
 <name>fs.s3a.aws.credentials.provider</name>
 <value>
 org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider,
 com.amazonaws.auth.EnvironmentVariableCredentialsProvider,
 com.amazonaws.auth.InstanceProfileCredentialsProvider</value>
</property>

Note

Retrieving credentials with the InstanceProfileCredentialsProvider
is a slower operation than looking up configuration operations or environment
variables. It is best to list it after all other authentication providers — excluding
the AnonymousAWSCredentialsProvider, which must come last.

3.2.5.1. Using Temporary Session Credentials

Temporary Security Credentials can be obtained from the AWS Security Token Service.
These credentials consist of an access key, a secret key, and a session token.

To authenticate with these credentials:

1. Declare org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider as
the provider.

2. Set the session key in the property fs.s3a.session.token, and set the access and
secret key properties to those of this temporary session.

http://docs.aws.amazon.com/java-sdk/latest/developer-guide/credentials.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Hortonworks Data Platform December 15, 2017

11

<property>
 <name>fs.s3a.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider</value>
</property>

<property>
 <name>fs.s3a.access.key</name>
 <value>SESSION-ACCESS-KEY</value>
</property>

<property>
 <name>fs.s3a.secret.key</name>
 <value>SESSION-SECRET-KEY</value>
</property>

<property>
 <name>fs.s3a.session.token</name>
 <value>SECRET-SESSION-TOKEN</value>
</property>

The lifetime of session credentials is determined when the credentials are issued; once they
expire the application will no longer be able to authenticate to AWS.

3.2.5.2. Using Anonymous Login

You can configure anonymous access to a publicly accessible Amazon S3 bucket without
using any credentials. This can be useful for accessing public data sets.

Note

Allowing anonymous access to an Amazon S3 bucket compromises security and
therefore is unsuitable for most use cases.

To use anonymous login, specify
org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider:

<property>
 <name>fs.s3a.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider</value>
</property>

Once this is done, there is no need to supply any credentials in the Hadoop configuration or
via environment variables.

This option can be used to verify that an object store does not permit unauthenticated
access; that is, if an attempt to list a bucket is made using the anonymous credentials, it
should fail — unless explicitly opened up for broader access.

hadoop fs -ls \
 -D fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.
AnonymousAWSCredentialsProvider \
 s3a://landsat-pds/

S3A may be configured to always access specific buckets anonymously. For example, the
following configuration defines anonymous access to the public landsat-pds bucket
accessed via s3a://landsat-pds/ URI:

Hortonworks Data Platform December 15, 2017

12

<property>
 <name>fs.s3a.bucket.landsat-pds.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider</value>
</property>

Note

If a list of credential providers is given in
fs.s3a.aws.credentials.provider, then the anonymous credential
provider must come last. If not, credential providers listed after it will be
ignored.

3.2.5.3. Protecting S3 Credentials with Credential Providers

The Hadoop credential provider framework allows secure credential providers to keep
secrets outside Hadoop configuration files, storing them in encrypted files in local or
Hadoop filesystems, and including them in requests.

The S3A configuration options with sensitive data (fs.s3a.secret.key,
fs.s3a.access.key, and fs.s3a.session.token) can have their data saved to
a binary file, with the values being read in when the S3A filesystem URL is used for data
access. The reference to this credential provider is all that is passed as a direct configuration
option.

To protect your credentials with credential providers:

1. Creating a Credential File [12]

2. Configuring the Hadoop Security Credential Provider Path Property [13]

In addition, if you are using per-bucket credentials, refer to Customizing Per-Bucket Secrets
Held in Credential Files.

3.2.5.3.1. Creating a Credential File

You can create a credential file on any Hadoop filesystem. When you create one on HDFS
or a UNIX filesystem, the permissions are automatically set to keep the file private to the
reader — though as directory permissions are not touched, you should verify that the
directory containing the file is readable only by the current user. For example:

hadoop credential create fs.s3a.access.key -value 123 \
 -provider jceks://hdfs@nn1.example.com:9001/user/backup/s3.jceks

hadoop credential create fs.s3a.secret.key -value 456 \
 -provider jceks://hdfs@nn1.example.com:9001/user/backup/s3.jceks

After creating the credential file, you can list it to see what entries are kept inside it. For
example:

hadoop credential list -provider jceks://hdfs@nn1.example.com:9001/user/
backup/s3.jceks

Listing aliases for CredentialProvider: jceks://hdfs@nn1.example.com:9001/
user/backup/s3.jceks
fs.s3a.secret.key
fs.s3a.access.key

Hortonworks Data Platform December 15, 2017

13

After performing these steps. credentials are ready for use.

3.2.5.3.2. Configuring the Hadoop Security Credential Provider Path Property

The URL to the provider must be set in the configuration property
hadoop.security.credential.provider.path, either in the core-site.xml
configuration file or on the command line:

Example: Setting via Configuration File

<property>
 <name>hadoop.security.credential.provider.path</name>
 <value>jceks://hdfs@nn1.example.com:9001/user/backup/s3.jceks</value>
</property>

Because this property only supplies the path to the secrets file, the configuration option
itself is no longer a sensitive item.

Example: Setting via Command Line

hadoop distcp \
 -D hadoop.security.credential.provider.path=jceks://hdfs@nn1.example.
com:9001/user/backup/s3.jceks \
 hdfs://nn1.example.com:9001/user/backup/007020615 s3a://glacier1/

hadoop fs \
 -D hadoop.security.credential.provider.path=jceks://hdfs@nn1.example.
com:9001/user/backup/s3.jceks \
 -ls s3a://glacier1/

Because the provider path is not itself a sensitive secret, there is no risk from placing its
declaration on the command line.

Once the provider is set in the Hadoop configuration, hadoop commands work exactly as if
the secrets were in an XML file. For example:

hadoop distcp hdfs://nn1.example.com:9001/user/backup/007020615 s3a://
glacier1/
hadoop fs -ls s3a://glacier1/

3.2.5.3.3. Customizing Per-Bucket Secrets Held in Credential Files

Although most properties which are set per-bucket are automatically propagated from
their fs.s3a.bucket. custom entry to that of the base fs.s3a. option, supporting
secrets kept in Hadoop credential files is slightly more complex: property values are kept in
these files, and they cannot be dynamically patched.

Instead, callers need to create different configuration files for each bucket, setting the base
secrets, then declare the path to the appropriate credential file in a bucket-specific version
of the property fs.s3a.security.credential.provider.path.

Example

1. Set base properties for fs.s3a.secret.key and fs.s3a.access.key in core-
site.xml or in your job submission.

2. Set similar properties per-bucket for a bucket called "frankfurt-1". These will override the
base properties when talking to the bucket "frankfurt-1".

Hortonworks Data Platform December 15, 2017

14

3. When setting properties in a JCEKS file, you must use the base property names — even if
you only intend to use them for a specific bucket.

For example, in the JCEKS file called hdfs://users/steve/frankfurt.jceks, set
the base parameters fs.s3a.secret.key, fs.s3a.access.key to your "frankfurt-1" values from
step 2.

4. Next, set the path to the JCEKS file as a per-bucket option.

For example, fs.s3a.bucket.frankfurt-1.security.credential.provider.path should be set to
hdfs://users/steve/frankfurt.jceks.

5. When the credentials for "frankfurt-1" are set up, the property
fs.s3a.bucket.frankfurt-1.security.credential.provider.path will be
read, and the secrets from that file used to set the options to access the bucket.

Related Links

Using Per-Bucket Credentials to Authenticate [8]

Credential Provider API

3.3. Referencing S3 in the URLs
Regardless of which specific Hadoop ecosystem application you are using, you can access
data stored in Amazon S3 using the URL starting with the s3a:// prefix followed by bucket
name and path to file or directory.

The URL structure is:

s3a://<bucket>/<dir>/<file>

For example, to access a file called "mytestfile" in a directory called "mytestdir", which is
stored in a bucket called "mytestbucket", the URL is:

s3a://mytestbucket/mytestdir/mytestfile

The following FileSystem shell commands demonstrate access to a bucket named
mytestbucket:

hadoop fs -ls s3a://mytestbucket/

hadoop fs -mkdir s3a://mytestbucket/testDir

hadoop fs -put testFile s3a://mytestbucket/testFile

hadoop fs -cat s3a://mytestbucket/testFile
test file content

3.4. Configuring Per-Bucket Settings
You can specify bucket-specific configuration values which override the common
configuration values.

This allows for:

https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/site/markdown/CredentialProviderAPI.md

Hortonworks Data Platform December 15, 2017

15

• Different authentication mechanisms and credentials on different buckets

• Different encryption policies on different buckets

• Different S3 endpoints to use for different buckets. This is essential when working with
S3 regions which only support the "V4 authentication API", in case of which callers must
always declare the explicit region

All fs.s3a options other than a small set of unmodifiable values (currently
fs.s3a.impl) can be set on a per-bucket basis.

To set a bucket-specific option:

1. Add a new configuration, replacing the fs.s3a. prefix on an option with
fs.s3a.bucket.BUCKETNAME., where BUCKETNAME is the name of the bucket.

For example, if you are configuring access key for a bucket called
"nightly", instead of using fs.s3a.access.key property name, use
fs.s3a.bucket.nightly.access.key.

2. When connecting to a bucket, all options explicitly set for that bucket will override the
base fs.s3a. values, but they will not be picked up by other buckets.

Example

You may have a base configuration to use the IAM role information available when
deployed in Amazon EC2:

<property>
 <name>fs.s3a.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.SharedInstanceProfileCredentialsProvider</
value>
</property>

This will be the default authentication mechanism for S3A buckets.

A bucket s3a://nightly/ used for nightly data uses a session key, so its bucket-specific
configuration is:

<property>
 <name>fs.s3a.bucket.nightly.access.key</name>
 <value>AKAACCES-SKEY-2</value>
</property>

<property>
 <name>fs.s3a.bucket.nightly.secret.key</name>
 <value>SESSION-SECRET-KEY</value>
</property>

<property>
 <name>fs.s3a.bucket.nightly.session.token</name>
 <value>SHORT-LIVED-SESSION-TOKEN</value>
</property>

<property>
 <name>fs.s3a.bucket.nightly.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider</value>

Hortonworks Data Platform December 15, 2017

16

</property>

Finally, the public s3a://landsat-pds/ bucket could be accessed anonymously, so its
bucket-specific configuration is:

<property>
 <name>fs.s3a.bucket.landsat-pds.aws.credentials.provider</name>
 <value>org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider</value>
</property>

For all other buckets, the base configuration is used.

Related Links

Configuring Per-Bucket Settings to Access Data Around the World [16]

Using Per-Bucket Credentials to Authenticate [8]

Customizing Per-Bucket Secrets Held in Credential Files [13]

3.4.1. Configuring Per-Bucket Settings to Access Data
Around the World

S3 buckets are hosted in different AWS regions, the default being "US-East". The S3A client
talks to this region by default, issuing HTTP requests to the server s3.amazonaws.com.
This central endpoint can be used for accessing any bucket in any region which supports
using the V2 Authentication API, albeit possibly at a reduced performance.

Each region has its own S3 endpoint, documented by Amazon. The S3A client supports
these endpoints. While it is generally simpler to use the default endpoint, direct
connections to specific regions (i.e. connections via region's own endpoint) may deliver
performance and availability improvements, and are mandatory when working with the
most recently deployed regions, such as Frankfurt and Seoul.

When deciding which endpoint to use, consider the following:

• Applications running in EC2 infrastructure do not pay for data transfers to or from
local S3 buckets. In contrast, they will be billed for access to remote buckets. Therefore,
wherever possible, always use local buckets and local copies of data.

• When the V1 request signing protocol is used, the default S3 endpoint can support data
transfer with any bucket.

• When the V4 request signing protocol is used, AWS requires the explicit region endpoint
to be used — hence S3A must be configured to use the specific endpoint. This is done in
the configuration option fs.s3a.endpoint.

• All endpoints other than the default endpoint only support interaction with buckets local
to that S3 instance.

If the wrong endpoint is used, the request may fail. This may be reported as a 301 redirect
error, or as a 400 Bad Request. Take these failures as cues to check the endpoint setting of
a bucket.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Hortonworks Data Platform December 15, 2017

17

Here is a list of properties defining all Amazon S3 regions, as of March 2017.

These parameters can be used to specify endpoints for individual buckets. You can add
these properties to your core-site.xml:

<!-- This is the default endpoint, which can be used to interact with any v2
 region. -->
<property>
 <name>central.endpoint</name>
 <value>s3.amazonaws.com</value>
</property>

<property>
 <name>canada.endpoint</name>
 <value>s3.ca-central-1.amazonaws.com</value>
</property>

<property>
 <name>frankfurt.endpoint</name>
 <value>s3.eu-central-1.amazonaws.com</value>
</property>

<property>
 <name>ireland.endpoint</name>
 <value>s3-eu-west-1.amazonaws.com</value>
</property>

<property>
 <name>london.endpoint</name>
 <value>s3.eu-west-2.amazonaws.com</value>
</property>

<property>
 <name>mumbai.endpoint</name>
 <value>s3.ap-south-1.amazonaws.com</value>
</property>

<property>
 <name>ohio.endpoint</name>
 <value>s3.us-east-2.amazonaws.com</value>
</property>

<property>
 <name>oregon.endpoint</name>
 <value>s3-us-west-2.amazonaws.com</value>
</property>

<property>
 <name>sao-paolo.endpoint</name>
 <value>s3-sa-east-1.amazonaws.com</value>
</property>

<property>
 <name>seoul.endpoint</name>
 <value>s3.ap-northeast-2.amazonaws.com</value>
</property>

<property>
 <name>singapore.endpoint</name>
 <value>s3-ap-southeast-1.amazonaws.com</value>

Hortonworks Data Platform December 15, 2017

18

</property>

<property>
 <name>sydney.endpoint</name>
 <value>s3-ap-southeast-2.amazonaws.com</value>
</property>

<property>
 <name>tokyo.endpoint</name>
 <value>s3-ap-northeast-1.amazonaws.com</value>
</property>

<property>
 <name>virginia.endpoint</name>
 <value>${central.endpoint}</value>
</property>

The list above can be used to specify the endpoint of individual buckets. If you add these to
yourcore-site.xml, you can then define per-bucket endpoints.

Example

The following examples show per-bucket endpoints set for the "landsat-pds" and "eu-
dataset" buckets, with the endpoints set to central and EU/Ireland, respectively:

<property>
 <name>fs.s3a.bucket.landsat-pds.endpoint</name>
 <value>${central.endpoint}</value>
 <description>The endpoint for s3a://landsat-pds URLs</description>
</property>

<property>
 <name>fs.s3a.bucket.eu-dataset.endpoint</name>
 <value>${ireland.endpoint}</value>
 <description>The endpoint for s3a://eu-dataset URLs</description>
</property>

Explicitly declaring a bucket bound to the central endpoint ensures that if the default
endpoint is changed to a new region, data stored in US-east is still reachable.

3.5. A List of S3A Configuration Properties
The following fs.s3a configuration properties are available. To override these default s3a
settings, add your configuration to your core-site.xml.

<property>
 <name>fs.s3a.connection.maximum</name>
 <value>15</value>
 <description>Controls the maximum number of simultaneous connections to S3.
</description>
</property>

<property>
 <name>fs.s3a.connection.ssl.enabled</name>
 <value>true</value>
 <description>Enables or disables SSL connections to S3.</description>
</property>

<property>

Hortonworks Data Platform December 15, 2017

19

 <name>fs.s3a.endpoint</name>
 <description>AWS S3 endpoint to connect to. An up-to-date list is
 provided in the AWS Documentation: regions and endpoints. Without this
 property, the standard region (s3.amazonaws.com) is assumed.
 </description>
</property>

<property>
 <name>fs.s3a.path.style.access</name>
 <value>false</value>
 <description>Enable S3 path style access ie disabling the default virtual
 hosting behaviour.
 Useful for S3A-compliant storage providers as it removes the need to set
 up DNS for virtual hosting.
 </description>
</property>

<property>
 <name>fs.s3a.proxy.host</name>
 <description>Hostname of the (optional) proxy server for S3 connections.</
description>
</property>

<property>
 <name>fs.s3a.proxy.port</name>
 <description>Proxy server port. If this property is not set
 but fs.s3a.proxy.host is, port 80 or 443 is assumed (consistent with
 the value of fs.s3a.connection.ssl.enabled).</description>
</property>

<property>
 <name>fs.s3a.proxy.username</name>
 <description>Username for authenticating with proxy server.</description>
</property>

<property>
 <name>fs.s3a.proxy.password</name>
 <description>Password for authenticating with proxy server.</description>
</property>

<property>
 <name>fs.s3a.proxy.domain</name>
 <description>Domain for authenticating with proxy server.</description>
</property>

<property>
 <name>fs.s3a.proxy.workstation</name>
 <description>Workstation for authenticating with proxy server.</description>
</property>

<property>
 <name>fs.s3a.attempts.maximum</name>
 <value>20</value>
 <description>How many times we should retry commands on transient errors.</
description>
</property>

<property>
 <name>fs.s3a.connection.establish.timeout</name>
 <value>5000</value>

Hortonworks Data Platform December 15, 2017

20

 <description>Socket connection setup timeout in milliseconds.</description>
</property>

<property>
 <name>fs.s3a.connection.timeout</name>
 <value>200000</value>
 <description>Socket connection timeout in milliseconds.</description>
</property>

<property>
 <name>fs.s3a.paging.maximum</name>
 <value>5000</value>
 <description>How many keys to request from S3 when doing
 directory listings at a time.</description>
</property>

<property>
 <name>fs.s3a.threads.max</name>
 <value>10</value>
 <description> Maximum number of concurrent active (part)uploads,
 which each use a thread from the threadpool.</description>
</property>

<property>
 <name>fs.s3a.socket.send.buffer</name>
 <value>8192</value>
 <description>Socket send buffer hint to amazon connector. Represented in
 bytes.</description>
</property>

<property>
 <name>fs.s3a.socket.recv.buffer</name>
 <value>8192</value>
 <description>Socket receive buffer hint to amazon connector. Represented in
 bytes.</description>
</property>

<property>
 <name>fs.s3a.threads.keepalivetime</name>
 <value>60</value>
 <description>Number of seconds a thread can be idle before being
 terminated.</description>
</property>

<property>
 <name>fs.s3a.max.total.tasks</name>
 <value>5</value>
 <description>Number of (part)uploads allowed to the queue before
 blocking additional uploads.</description>
</property>

<property>
 <name>fs.s3a.multipart.size</name>
 <value>100M</value>
 <description>How big (in bytes) to split upload or copy operations up into.
 A suffix from the set {K,M,G,T,P} may be used to scale the numeric value.
 </description>
</property>

<property>

Hortonworks Data Platform December 15, 2017

21

 <name>fs.s3a.multipart.threshold</name>
 <value>2147483647</value>
 <description>How big (in bytes) to split upload or copy operations up into.
 This also controls the partition size in renamed files, as rename()
 involves
 copying the source file(s).
 A suffix from the set {K,M,G,T,P} may be used to scale the numeric value.
 </description>
</property>

<property>
 <name>fs.s3a.multiobjectdelete.enable</name>
 <value>true</value>
 <description>When enabled, multiple single-object delete requests are
 replaced by
 a single 'delete multiple objects'-request, reducing the number of
 requests.
 Beware: legacy S3-compatible object stores might not support this request.
 </description>
</property>

<property>
 <name>fs.s3a.acl.default</name>
 <description>Set a canned ACL for newly created and copied objects. Value
 may be Private,
 PublicRead, PublicReadWrite, AuthenticatedRead, LogDeliveryWrite,
 BucketOwnerRead,
 or BucketOwnerFullControl.</description>
</property>

<property>
 <name>fs.s3a.multipart.purge</name>
 <value>false</value>
 <description>True if you want to purge existing multipart uploads that may
 not have been
 completed/aborted correctly</description>
</property>

<property>
 <name>fs.s3a.multipart.purge.age</name>
 <value>86400</value>
 <description>Minimum age in seconds of multipart uploads to purge</
description>
</property>

<property>
 <name>fs.s3a.signing-algorithm</name>
 <description>Override the default signing algorithm so legacy
 implementations can still be used</description>
</property>

<property>
 <name>fs.s3a.server-side-encryption-algorithm</name>
 <description>Specify a server-side encryption algorithm for s3a: file
 system.
 Unset by default, and the only other currently allowable value is AES256.
 </description>
</property>

<property>

Hortonworks Data Platform December 15, 2017

22

 <name>fs.s3a.buffer.dir</name>
 <value>${hadoop.tmp.dir}/s3a</value>
 <description>Comma separated list of directories that will be used to buffer
 file
 uploads to. No effect if fs.s3a.fast.upload is true.</description>
</property>

<property>
 <name>fs.s3a.block.size</name>
 <value>32M</value>
 <description>Block size to use when reading files using s3a: file system.
 </description>
</property>

<property>
 <name>fs.s3a.user.agent.prefix</name>
 <value></value>
 <description>
 Sets a custom value that will be prepended to the User-Agent header sent
 in
 HTTP requests to the S3 back-end by S3AFileSystem. The User-Agent header
 always includes the Hadoop version number followed by a string generated
 by
 the AWS SDK. An example is "User-Agent: Hadoop 2.8.0, aws-sdk-java/1.10.
6".
 If this optional property is set, then its value is prepended to create a
 customized User-Agent. For example, if this configuration property was
 set
 to "MyApp", then an example of the resulting User-Agent would be
 "User-Agent: MyApp, Hadoop 2.8.0, aws-sdk-java/1.10.6".
 </description>
</property>

<property>
 <name>fs.s3a.readahead.range</name>
 <value>64K</value>
 <description>Bytes to read ahead during a seek() before closing and
 re-opening the S3 HTTP connection. This option will be overridden if
 any call to setReadahead() is made to an open stream.</description>
</property>

3.6. Encrypting Data on S3
Amazon S3 supports a number of encryption mechanisms to better secure the data in S3:

• In Server-Side Encryption (SSE), the data is encrypted before it is saved to disk in S3,
and decrypted when it is read. This encryption and decryption takes place in the S3
infrastructure, and is transparent to (authenticated) clients.

• In Client-Side Encryption (CSE), the data is encrypted and decrypted on the client,
that is, inside the AWS S3 SDK. This mechanism isn't supported in Hadoop due to
incompatibilities with most applications. Specifically, the amount of decrypted data is
often less than the file length, breaking all the code which assumes that the the content
of a file is the same size as that stated in directory listings.

http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Hortonworks Data Platform December 15, 2017

23

Note

HDP only supports Server-Side Encryption ("SSE") and does not support Client-
Side Encryption ("CSE").

For this server-side encryption to work, the S3 servers require secret keys to encrypt data,
and the same secret keys to decrypt it. These keys can be managed in three ways:

• SSE-S3: By using Amazon S3-Managed Keys

• SSE-KMS: By using AWS Key Management Service

• SSE-C: By using customer-supplied keys

In general, the specific configuration mechanism can be set via the property
fs.s3a.server-side-encryption-algorithm in core-site.xml. However,
some encryption options require extra settings. Server Side encryption slightly slows down
performance when reading data from S3.

It is possible to configure encryption for specific buckets and to mandate encryption for a
specific S3 bucket.

Related Links

Troubleshooting S3-SSE [42]

3.6.1. SSE-S3: Amazon S3-Managed Encryption Keys
In SSE-S3, all keys and secrets are managed inside S3. This is the simplest encryption
mechanism.

3.6.1.1. Enabling SSE-S3

To write S3-SSE encrypted files, the value of fs.s3a.server-side-encryption-
algorithm must be set to that of the encryption mechanism used in core-site.xml;
currently only AES256 is supported.

<property>
 <name>fs.s3a.server-side-encryption-algorithm</name>
 <value>AES256</value>
</property>

Once set, all new data will be uploaded encrypted. There is no need to set this property
when downloading data — the data will be automatically decrypted when read using the
Amazon S3-managed key.

To learn more, refer to Protecting Data Using Server-Side Encryption with Amazon S3-
Managed Encryption Keys (SSE-S3) in AWS documentation.

3.6.2. SSE-KMS: Amazon S3-KMS Managed Encryption Keys
Amazon offers a pay-per-use key management service, AWS KMS. This service can be used
to encrypt data on S3 using keys which can be centrally managed and assigned to specific
roles and IAM accounts.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://aws.amazon.com/documentation/kms/

Hortonworks Data Platform December 15, 2017

24

The AWS KMS can be used by S3 to encrypt uploaded data. When uploading data
encrypted with SSE-KMS, the named key that was used to encrypt the data is retrieved
from the KMS service, and used to encode the per-object secret which encrypts the
uploaded data. To decode the data, the same key must be retrieved from KMS and used to
unencrypt the per-object secret key, which is then used to decode the actual file.

KMS keys can be managed by an organization's administrators in AWS, including having
access permissions assigned and removed from specific users, groups, and IAM roles. Only
those "principals" with granted rights to a key may access it, hence only they may encrypt
data with the key, and decrypt data encrypted with it. This allows KMS to be used to
provide a cryptographically secure access control mechanism for data stores on S3.

Note

AWS KMS service is not related to the Key Management Service built into
Hadoop (Hadoop KMS). The Hadoop KMS primarily focuses on managing keys
for HDFS Transparent Encryption. Similarly, HDFS encryption is unrelated to S3
data encryption.

3.6.2.1. Enabling SSE-KMS

To enable SSE-KMS, the property fs.s3a.server-side-encryption-algorithm
must be set to SSE-KMS in core-site.xml:

<property>
 <name>fs.s3a.server-side-encryption-algorithm</name>
 <value>SSE-KMS</value>
</property>

The ID of the specific key used to encrypt the data should also be set in the property
fs.s3a.server-side-encryption.key:

<property>
 <name>fs.s3a.server-side-encryption.key</name>
 <value>arn:aws:kms:us-west-2:360379543683:key/
071a86ff-8881-4ba0-9230-95af6d01ca01</value>
</property>

If your account is set up set up with a default KMS key and fs.s3a.server-side-
encryption.key is unset, the default key will be used.

Alternatively, organizations may define a default key in the Amazon KMS; if a default
key is set, then it will be used whenever SSE-KMS encryption is chosen and the value of
fs.s3a.server-side-encryption.key is empty.

Note

AWS Key Management Service (KMS) is pay-per-use, working with data
encrypted via KMS keys incurs extra charges during data I/O.

To learn more, refer to Protecting Data Using Server-Side Encryption with AWS KMS-
Managed Keys (SSE-KMS) in AWS documentation.

http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html
https://aws.amazon.com/kms/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Hortonworks Data Platform December 15, 2017

25

3.6.3. SSE-C: Server-Side Encryption with Customer-Provided
Encryption Keys

In SSE-C, the client supplies the secret key needed to read and write data.

Note

SSE-C integration with Hadoop is still stabilizing; issues related to it are still
surfacing. It is already clear that SSE-C with a common key must be used
exclusively within a bucket if it is to be used at all. This is the only way to ensure
that path and directory listings do not fail with "Bad Request" errors.

3.6.3.1. Enabling SSE-C

To use SSE-C, the configuration option fs.s3a.server-side-encryption-
algorithm must be set to SSE-C, and a base-64 encoding of the key placed in
fs.s3a.server-side-encryption.key.

<property>
 <name>fs.s3a.server-side-encryption-algorithm</name>
 <value>SSE-C</value>
</property>

<property>
 <name>fs.s3a.server-side-encryption.key</name>
 <value>RG8gbm90IGV2ZXIgbG9nIHRoaXMga2V5IG9yIG90aGVyd2lzZSBzaGFyZSBpdA==</
value>
</property>

This property can be set in a Hadoop JCEKS credential file, which is significantly more secure
than embedding secrets in the XML configuration file.

3.6.4. Configuring Encryption for Specific Buckets

S3A's per-bucket configuration mechanism can be used to configure the encryption
mechanism and credentials for specific buckets. For example, to access the
bucket called "production" using SSE-KMS with the key ID arn:aws:kms:us-
west-2:360379543683:key/071a86ff-8881-4ba0-9230-95af6d01ca01, the
settings are:

<property>
 <name>fs.s3a.bucket.production.server-side-encryption-algorithm</name>
 <value>SSE-KMS</value>
</property>

<property>
 <name>fs.s3a.bucket.production.server-side-encryption.key</name>
 <value>arn:aws:kms:us-west-2:360379543683:key/
071a86ff-8881-4ba0-9230-95af6d01ca01</value>
</property>

Per-bucket configuration does not apply to secrets kept in JCEKS files; the core
configuration properties must be used (for example fs.s3a.server-side-
encryption.key), with the path to the JCEKS file instead configured for the bucket:

Hortonworks Data Platform December 15, 2017

26

<property>
 <name>fs.s3a.bucket.production.server-side-encryption-algorithm</name>
 <value>SSE-KMS</value>
</property>

<property>`
 <name>fs.s3a.bucket.production.security.credential.provider.path</name>
 <value>hdfs://common/production.jceks</value>
</property>

To learn more, refer to Protecting Data Using Server-Side Encryption with Customer-
Provided Encryption Keys (SSE-C) in AWS documentation.

3.6.5. Mandating Encryption for an S3 Bucket

To mandate that all data uploaded to a bucket is encrypted, it is possible to set a bucket
policy declaring that clients must provide encryption information with all data uploaded.

Mandating encryption across a bucket offers significant benefits:

1. It guarantees that all clients uploading data have encryption enabled; there is no need
(or indeed, easy mechanism) to test this within a client.

2. It guarantees that the same encryption mechanism is used by all clients.

3. If applied to an empty bucket, it guarantees that all data in the bucket is encrypted.

We recommend selecting an encryption policy for a bucket when the bucket is created,
and setting it in the bucket policy. This stops misconfigured clients from unintentionally
uploading unencrypted data.

Note

Mandating an encryption mechanism on newly uploaded data does not encrypt existing
data; existing data will retain whatever encryption (if any) applied at the time of creation.

Here is a policy to mandate SSE-S3/AES265 encryption on all data uploaded to a bucket.
This covers uploads as well as the copy operations which take place when file/directory
rename operations are mimicked.

{
 "Version": "2012-10-17",
 "Id": "EncryptionPolicy",
 "Statement": [{ "Sid": "RequireEncryptionHeaderOnPut", "Effect":
 "Deny", "Principal": "*", "Action": ["s3:PutObject"], "Resource":
 "arn:aws:s3:::BUCKET/*", "Condition": { "Null": { "s3:x-amz-server-side-
encryption": true } } }, { "Sid": "RequireAESEncryptionOnPut", "Effect":
 "Deny", "Principal": "*", "Action": ["s3:PutObject"], "Resource":
 "arn:aws:s3:::BUCKET/*", "Condition": { "StringNotEquals": { "s3:x-amz-
server-side-encryption": "AES256" } } }] }

To use SSE-KMS, a different restriction must be defined:

http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://aws.amazon.com/blogs/security/how-to-prevent-uploads-of-unencrypted-objects-to-amazon-s3/
https://aws.amazon.com/blogs/security/how-to-prevent-uploads-of-unencrypted-objects-to-amazon-s3/

Hortonworks Data Platform December 15, 2017

27

{
 "Version": "2012-10-17",
 "Id": "EncryptionPolicy",
 "Statement": [{ "Sid": "RequireEncryptionHeaderOnPut", "Effect":
 "Deny", "Principal": "*", "Action": ["s3:PutObject"], "Resource":
 "arn:aws:s3:::BUCKET/*", "Condition": { "Null": { "s3:x-amz-server-side-
encryption": true } } }, { "Sid": "RequireKMSEncryptionOnPut", "Effect":
 "Deny", "Principal": "*", "Action": ["s3:PutObject"], "Resource":
 "arn:aws:s3:::BUCKET/*", "Condition": { "StringNotEquals": { "s3:x-amz-
server-side-encryption": "SSE-KMS" } } }] }

To use one of these policies:

1. Replace BUCKET with the specific name of the bucket being secured.

2. Locate the bucket in the AWS console S3 section.

3. Select the "Permissions" tab.

4. Select the "Bucket Policy" tab in the permissions section.

5. Paste the edited policy into the editor.

6. Save the policy.

3.6.6. Performance Impact of Encryption

Server Side encryption slightly slows down performance when reading data from S3, both
in the reading of data during the execution of a query, and in scanning the files prior to the
actual scheduling of work.

Amazon throttles reads and writes of S3-SSE data, which results in a significantly lower
throughput than normal S3 IO requests. The default rate, 600 requests/minute, means that
at most ten objects per second can be read or written using SSE-KMS per second — across
an entire hadoop cluster (or indeed, the entire customer account). The default limits may
be suitable during development — but in large scale production applications the limits may
rapidly be reached. Contact Amazon to increase capacity.

3.7. Improving Performance for S3
Use this checklist to ensure optimal performance when working with data in S3.

Checklist for Data

• [] Amazon S3 bucket is in same region as the EC2-hosted cluster. Learn more

• [] The directory layout is "shallow". For directory listing performance, the directory
layout prefers "shallow" directory trees with many files over deep directory trees with
only a few files per directory.

• [] The "pseudo" block size set in fs.s3a.block.size is appropriate for the work to
be performed on the data.

• [] Copy to HDFS any data that needs to be repeatedly read to HDFS.

https://console.aws.amazon.com/s3/home
http://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Hortonworks Data Platform December 15, 2017

28

Checklist for Cluster Configs

• [] Set yarn.scheduler.capacity.node-locality-delay to 0 to improve
container launch times. Learn more

• [] When copying data using DistCp, use the following performance optimizations.

• [] When reading ORC data, set fs.s3a.experimental.input.fadvise to
random. Learn more

• [] If planning to use Hive with S3, review Improving Hive Performance with S3/ADLS/
WASB.

• [] If planning to use Spark with S3, review Improving Spark Performance with S3/
ADLS/WASB.

Checklist for Code

• [] Application does not make rename() calls. Where it does, it does not assume the
operation is immediate.

• [] Application does not assume that delete() is near-instantaneous.

• [] Application uses FileSystem.listFiles(path, recursive=true) to list a
directory tree.

• [] Application prefers forward seeks through files, rather than full random IO.

• [] If making "random" IO through seek() and read() sequences or and Hadoop's
PositionedReadable API, fs.s3a.experimental.input.fadvise is set to
random. Learn more

More

• [] Improve Load-Balancing Behavior for S3.

3.7.1. Improving DistCp Performance with S3

This section includes tips for improving performance when copying large volumes of data
between Amazon S3 and HDFS.

The bandwidth between the Hadoop cluster and Amazon S3 is the upper limit to how
fast data can be copied into S3. The further the Hadoop cluster is from the Amazon S3
installation, or the narrower the network connection is, the longer the operation will
take. Even a Hadoop cluster deployed within Amazon's own infrastructure may encounter
network delays from throttled VM network connections.

Network bandwidth limits notwithstanding, there are some options which can be used to
tune the performance of an upload:

• Working with Local S3 Buckets [29]

• Accelerating File Listing [29]

• Configuring and Tuning S3A Fast Upload [29]

Hortonworks Data Platform December 15, 2017

29

• Controlling the Number of Mappers and Their Bandwidth [33]

3.7.1.1. Working with Local S3 Buckets

A foundational step to getting good performance is working with buckets close to the
Hadoop cluster, where "close" is measured in network terms.

Maximum performance is achieved from working with S3 buckets in the same AWS region
as the cluster. For example, if your cluster is in North Virginia ("US East"), you will achieve
best performance if your S3 bucket is in the same region.

In addition to improving performance, working with local buckets ensures that no bills are
incurred for reading from the bucket.

3.7.1.2. Accelerating File Listing

When data is copied between buckets, listing all the files to copy can take a long time. In
such cases, you can increase -numListstatusThreads from 1 (default) to 15. With this
setting, multiple threads will be used for listing the contents of the source folder.

3.7.1.3. Configuring and Tuning S3A Fast Upload

Note

These tuning recommendations are experimental and may change in the
future.

Because of the nature of the S3 object store, data written to an S3A OutputStream is
not written incrementally — instead, by default, it is buffered to disk until the stream is
closed in its close() method. This can make output slow because the execution time for
OutputStream.close() is proportional to the amount of data buffered and inversely
proportional to the bandwidth between the host to S3; that is O(data/bandwidth).
Other work in the same process, server, or network at the time of upload may increase the
upload time.

In summary, the further the process is from the S3 endpoint, or the smaller the EC2 VM is,
the longer it will take complete the work. This can create problems in application code:

• Code often assumes that the close() call is fast; the delays can create bottlenecks in
operations.

• Very slow uploads sometimes cause applications to time out - generally, threads blocking
during the upload stop reporting progress, triggering timeouts.

• Streaming very large amounts of data may consume all disk space before the upload
begins.

3.7.1.3.1. Enabling S3A Fast Upload

To enable the fast upload mechanism, set the fs.s3a.fast.upload property (it is
disabled by default).

When this is set, the incremental block upload mechanism is used, with the buffering
mechanism set in fs.s3a.fast.upload.buffer. The number of threads performing

Hortonworks Data Platform December 15, 2017

30

uploads in the filesystem is defined by fs.s3a.threads.max; the queue of waiting
uploads limited by fs.s3a.max.total.tasks. The size of each buffer is set by
fs.s3a.multipart.size.

3.7.1.3.2. Configuring S3A Fast Upload Options

The following major configuration options are available for the S3A fast upload:

Table 3.2. S3A Fast Upload Configuration Options

Parameter Default Value Description

fs.s3a.fast.upload.buffer disk The fs.s3a.fast.upload.buffer
determines the buffering mechanism to use
when fs.s3a.fast.upload is set to "true";
it has no effect when fs.s3a.fast.upload
is false.

Allowed values are: disk, array, bytebuffer:

• (default) "disk" will use the directories listed
in fs.s3a.buffer.dir as the location(s)
to save data prior to being uploaded.

• "array" uses arrays in the JVM heap.

• "bytebuffer" uses off-heap memory within
the JVM.

Both "array" and "bytebuffer" will consume
memory in a single stream up to the number
of blocks set by: fs.s3a.multipart.size
* fs.s3a.fast.upload.active.blocks.
If using either of these mechanisms, keep this
value low.

The total number of threads performing
work across all threads is set by
fs.s3a.threads.max, with
fs.s3a.max.total.tasks values setting
the number of queued work items.

fs.s3a.multipart.size 100M Defines the size (in bytes) of the chunks into
which the upload or copy operations will be
split up. A suffix from the set {K,M,G,T,P} may
be used to scale the numeric value.

fs.s3a.fast.upload.active.block 8 Defines the maximum number of blocks
a single output stream can have active
uploading, or queued to the central FileSystem
instance's pool of queued operations. This
stops a single stream overloading the shared
thread pool.

fs.s3a.buffer.dir Empty value Allows you to add a comma separated list of
temporary directories use for storing blocks
of data prior to their being uploaded to
S3. When unset (by default), the Hadoop
temporary directory hadoop.tmp.dir is
used.

Note that:

• If the amount of data written to a stream is below that set in
fs.s3a.multipart.size, the upload is performed in the OutputStream.close()
operation —as with the original output stream.

Hortonworks Data Platform December 15, 2017

31

• The published Hadoop metrics monitor includes live queue length and upload operation
counts, so identifying when there is a backlog of work or a mismatch between data
generation rates and network bandwidth. Per-stream statistics can also be logged by
calling toString() on the current stream.

• Incremental writes are not visible; the object can only be listed or read when the
multipart operation completes in the close() call, which will block until the upload is
completed.

Fast Upload with Disk Buffers

This is the default buffer mechanism. The amount of data which can be buffered is limited
by the amount of available disk space.

When fs.s3a.fast.upload.buffer is set to "disk", all data is buffered to local hard
disks prior to upload. This minimizes the amount of memory consumed, and so eliminates
heap size as the limiting factor in queued uploads — exactly as the original "direct to disk"
buffering used when fs.s3a.fast.upload=false.

Fast Upload with Byte Buffers

When fs.s3a.fast.upload.buffer is set to "bytebuffer", all data is buffered in
"direct" ByteBuffers prior to upload. This may be faster than buffering to disk in cases such
as when disk space is small there may not be much disk space to buffer with (for example,
when using tiny EC2 VMs).

The ByteBuffers are created in the memory of the JVM, but not in the Java Heap itself. The
amount of data which can be buffered is limited by the Java runtime, the operating system,
and, for YARN applications, the amount of memory requested for each container.

The slower the upload bandwidth to S3, the greater the risk of running out of memory
— and so the more care is needed in tuning the upload thread settings to reduce the
maximum amount of data which can be buffered awaiting upload (see below).

Fast Upload with Array Buffers

When fs.s3a.fast.upload.buffer is set to "array", all data is buffered in byte arrays
in the JVM's heap prior to upload. This may be faster than buffering to disk.

The amount of data which can be buffered is limited by the available size of the JVM heap
heap. The slower the write bandwidth to S3, the greater the risk of heap overflows. This
risk can be mitigated by tuning the upload thread settings (see below).

3.7.1.3.3. Thread Tuning for S3A Fast Upload

Both the array and bytebuffer buffer mechanisms can consume very large amounts of
memory, on-heap or off-heap respectively. The disk buffer mechanism does not use much
memory up, but it consumes hard disk capacity.

If there are many output streams being written to in a single process, the amount of
memory or disk used is the multiple of all stream's active memory and disk use.

You may need to perform careful tuning to reduce the risk of running out memory,
especially if the data is buffered in memory. There are a number parameters which can be
tuned:

Hortonworks Data Platform December 15, 2017

32

1. The total number of threads available in the filesystem for data uploads or any other
queued filesystem operation. This is set in fs.s3a.threads.max.

2. The number of operations which can be queued for execution, awaiting a thread. This is
set in fs.s3a.max.total.tasks.

3. The number of blocks which a single output stream can have active (that is, being
uploaded by a thread or queued in the filesystem thread queue). This is set in
fs.s3a.fast.upload.active.blocks.

4. The length of time that an idle thread can stay in the thread pool before it is retired. This
is set in fs.s3a.threads.keepalivetime.

Table 3.3. S3A Fast Upload Tuning Options

Parameter Default Value Description

fs.s3a.fast.upload.active.blocks 4 Maximum number of blocks a single output
stream can have active (uploading, or queued
to the central FileSystem instance's pool of
queued operations). This stops a single stream
overloading the shared thread pool.

fs.s3a.threads.max 10 The total number of threads available in
the filesystem for data uploads or any other
queued filesystem operation.

fs.s3a.max.total.tasks 5 The number of operations which can be
queued for execution

fs.s3a.threads.keepalivetime 60 The number of seconds a thread can be idle
before being terminated.

When the maximum allowed number of active blocks of a single stream is reached, no
more blocks can be uploaded from that stream until one or more of those active block
uploads completes. That is, a write() call which would trigger an upload of a now full
datablock will instead block until there is capacity in the queue.

Consider the following:

• As the pool of threads set in fs.s3a.threads.max is shared (and intended to be
used across all threads), a larger number here can allow for more parallel operations.
However, as uploads require network bandwidth, adding more threads does not
guarantee speedup.

• The extra queue of tasks for the thread pool (fs.s3a.max.total.tasks) covers all
ongoing background S3A operations.

• When using memory buffering, a small value of
fs.s3a.fast.upload.active.blocks limits the amount of memory which can be
consumed per stream.

• When using disk buffering, a larger value of fs.s3a.fast.upload.active.blocks
does not consume much memory. But it may result in a large number of blocks to
compete with other filesystem operations.

We recommend a low value of fs.s3a.fast.upload.active.blocks — enough to
start background upload without overloading other parts of the system. Then experiment
to see if higher values deliver more throughput — especially from VMs running on EC2.

Hortonworks Data Platform December 15, 2017

33

3.7.1.4. Controlling the Number of Mappers and Their Bandwidth

If you want to control the number of mappers launched for DistCp, you can add the -m
option and set it to the desired number of mappers.

When using DistCp from a Hadoop cluster running in Amazon's infrastructure, increasing
the number of mappers may speed up the operation.

Similarly, if copying to S3 from a cluster in a different region, it is possible that the
bandwidth from the Hadoop cluster to Amazon S3 is the bottleneck. In such a situation,
because the bandwidth is shared across all mappers, adding more mappers will not
accelerate the upload: it will merely slow all the mappers down.

The -bandwidth option sets the approximate maximum bandwidth for each mapper in
Megabytes per second. This a floating point number, so a value such as -bandwidth 0.5
allocates 0.5 MB/s to each mapper.

3.7.2. Improving Container Allocation Performance for S3

As AWS does not have the concept of rack locality, set
yarn.scheduler.capacity.node-locality-delay = 0 to have faster container
launches when using the Capacity Scheduler.

For more information, refer to the Apache documentation.

3.7.3. Optimizing HTTP Get Requests for S3

Note

This feature is experimental and its behavior may change in the future.

The S3A filesystem client supports the notion of input policies, similar to that of the POSIX
fadvise() API call. This tunes the behavior of the S3A client to optimize HTTP GET
requests for various use cases. To optimize HTTP GET requests, you can take advantage of
the S3A experimental input policy fs.s3a.experimental.input.fadvise:

Policy Description

"sequential" (default) Read through the file, possibly with some short forward
seeks.

The whole document is requested in a single HTTP request;
forward seeks within the readahead range are supported
by skipping over the intermediate data.

This leads to maximum read throughput, but with very
expensive backward seeks.

"normal" This is currently the same as "sequential".

"random" Optimized for random IO, specifically the Hadoop
`PositionedReadable` operations — though `seek(offset);
read(byte_buffer)` also benefits.

Rather than ask for the whole file, the range of the HTTP
request is set to that of the length of data desired in the
`read` operation - rounded up to the readahead value set
in `setReadahead()` if necessary.

https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

Hortonworks Data Platform December 15, 2017

34

Policy Description

By reducing the cost of closing existing HTTP requests,
this is highly efficient for file IO accessing a binary file
through a series of `PositionedReadable.read()` and
`PositionedReadable.readFully()` calls. Sequential reading
of a file is expensive, as now many HTTP requests must be
made to read through the file.

For operations simply reading through a file (copying, DistCp, reading gzip or other
compressed formats, parsing .csv files, and so on) the sequential policy is appropriate.
This is the default, so you don't need to configure it.

For the specific case of high-performance random access IO (for example, accessing ORC
files), you may consider using the random policy in the following circumstances:

• Data is read using the PositionedReadable API.

• There are long distance (many MB) forward seeks.

• Backward seeks are as likely as forward seeks.

• There is little or no use of single character read() calls or small read(buffer) calls.

• Applications are running close to the Amazon S3 data store; that is, the EC2 VMs on
which the applications run are in the same region as the Amazon S3 bucket.

You must set the desired fadvise policy in the configuration option
fs.s3a.experimental.input.fadvise when the filesystem instance is created. It can
only be set on a per-filesystem basis, not on a per-file-read basis. You can set it in core-
site.xml:

<property>
 <name>fs.s3a.experimental.input.fadvise</name>
 <value>random</value>
</property>

Or, you can set it in the spark-defaults.conf configuration of Spark:

spark.hadoop.fs.s3a.experimental.input.fadvise random

Be aware that this random access performance comes at the expense of sequential IO —
which includes reading files compressed with gzip.

3.7.4. Improving Load-Balancing Behavior for S3

S3 uses a set of front-end servers to provide access to the underlying data. The decision
about which front-end server to use is handled via load-balancing DNS service. When the IP
address of an S3 bucket is looked up, the choice of which IP address to return to the client
is made based on the current load of the front-end servers.

Over time, the load across the front-end changes, so those servers that are considered
"lightly loaded" change. This means that if the DNS value is cached for any length of time,
applications may end up talking to an overloaded server; or, in the case of failures, they
may end up trying to talk to a server that is no longer there.

Hortonworks Data Platform December 15, 2017

35

And, for historical security reasons, in the era of applets, the DNS TTL of a JVM is set to
"infinity" by default.

To improve AWS load-balancing, set the DNS time-to-live of an application which works
with Amazon S3 to something lower than the default. Refer to Setting the JVM TTL for
DNS Name Lookups in the AWS documentation.

3.8. Troubleshooting S3
Use these tips to troubleshoot errors. Common problems that you may encounter while
working with Amazon S3 include:

• Authentication Failures [35]

• Classpath Related Errors [37]

• Connectivity Problems [38]

• Errors During Delete or Rename of Files [41]

• Errors Related to Visible S3A Inconsistency [41]

• Troubleshooting S3-SSE [42]

3.8.1. Authentication Failures

You may encounter the following S3 authentication issues.

3.8.1.1. Authentication Failure Due to Signature Mismatch

If Hadoop cannot authenticate with the S3 service endpoint, the client retries a number
of times before eventually failing. When it finally gives up, it will report a message about
signature mismatch:

com.amazonaws.services.s3.model.AmazonS3Exception:
 The request signature we calculated does not match the signature you
 provided.
 Check your key and signing method.
 (Service: AmazonS3; StatusCode: 403; ErrorCode: SignatureDoesNotMatch,

The likely cause is that you either have the wrong credentials for any of the current
authentication mechanism(s) — or somehow the credentials were not readable on the host
attempting to read or write the S3 bucket.

Enabling debug logging for the package org.apache.hadoop.fs.s3a can help provide
more information.

1. The standard first step is: try to use the AWS command line tools with the same
credentials, through a command such as:

hdfs fs -ls s3a://my-bucket/

Note the trailing "/" here; without that the shell thinks you are trying to list your home
directory under the bucket, which will only exist if explicitly created.

http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-jvm-ttl.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-jvm-ttl.html

Hortonworks Data Platform December 15, 2017

36

Attempting to list a bucket using inline credentials is a means of verifying that the key
and secret can access a bucket:

hdfs fs -ls s3a://key:secret@my-bucket/

Do escape any + or / symbols in the secret, as discussed below, and never share the URL,
logs generated using it, or use such an inline authentication mechanism in production.

Finally, if you set the environment variables, you can take advantage of S3A's support of
environment-variable authentication by attempting the same ls operation; that is, unset
the fs.s3a secrets and rely on the environment variables.

2. Make sure that the name of the bucket is the correct one. That is, check the URL.

3. Make sure the property names are correct. For S3A, they are fs.s3a.access.key and
fs.s3a.secret.key. You cannot just copy the S3N properties and replace s3n with
s3a.

4. Make sure that the properties are visible to the process attempting to talk to the object
store. Placing them in core-site.xml is the standard mechanism.

5. If using session authentication, the session may have expired. Generate a new session
token and secret.

6. If using environment variable-based authentication, make sure that the relevant
variables are set in the environment in which the process is running.

7. There are a couple of system configuration problems (JVM version, system clock) that
you should check.

3.8.1.2. Authentication Failure Due to Clock Skew

The timestamp is used in signing to S3, so as to defend against replay attacks. If the system
clock is too far behind or ahead of Amazon's, requests will be rejected.

This can surface as the situation where read requests are allowed, but operations which
write to the bucket are denied.

Solution: Check the system clock.

3.8.1.3. Authentication Failure When Using URLs with Embedded
Secrets

If you are using the strongly discouraged mechanism of including the AWS key and secret
in a URL, make sure that both "+" and "/" symbols are encoded in the URL. As many AWS
secrets include these characters, encoding problems are not uncommon.

Use this table for conversion:

Symbol Encoded Value

+ %2B

/ %2F

Hortonworks Data Platform December 15, 2017

37

For example, a URL for an S3 bucket with AWS ID user1 and secret a+b/c will be
represented as

s3a://user1:a%2Bb%2Fc@bucket

You only need to use this technique when placing secrets in the URL.

3.8.1.4. Authentication Failures When Running on Java 8u60+

A change in the Java 8 JVM broke some of the toString() string generation of
Joda Time 2.8.0, which stopped the Amazon S3 client from being able to generate
authentication headers suitable for validation by S3.

Solution: Make sure that the version of Joda Time is 2.8.1 or later, or use a new version of
Java 8.

3.8.2. Classpath Related Errors

The Hadoop S3 filesystem clients need the Hadoop-specific filesystem clients and third party
S3 client libraries to be compatible with the Hadoop code, and any dependent libraries to
be compatible with Hadoop and the specific JVM.

The classpath must be set up for the process talking to S3. If this is code running in the
Hadoop cluster, then the JARs must be on that classpath. This includes distcp.

3.8.2.1. ClassNotFoundException Errors

ClassNotFoundException: org.apache.hadoop.fs.s3a.S3AFileSystem
ClassNotFoundException: org.apache.hadoop.fs.s3native.NativeS3FileSystem
ClassNotFoundException: org.apache.hadoop.fs.s3.S3FileSystem

These are the Hadoop classes, found in the hadoop-aws JAR. An exception reporting that
one of these classes is missing means that this JAR is not on the classpath.

Similarly, this error

ClassNotFoundException: com.amazonaws.services.s3.AmazonS3Client

or similar errors related to another com.amazonaws class mean that one or more of the
aws-*-sdk JARs are missing.

To solve the issue, add the missing JARs to the classpath.

3.8.2.2. Missing Method in com.amazonaws Class

This can be triggered by incompatibilities between the AWS SDK on the classpath and the
version with which Hadoop was compiled.

The AWS SDK JARs change their signature between releases often, so the only way to
safely update the AWS SDK version is to recompile Hadoop against the later version.

There is nothing the Hadoop team can do here; if you get this problem, then you are on
your own. The Hadoop developer team did look at using reflection to bind to the SDK,

Hortonworks Data Platform December 15, 2017

38

but there were too many changes between versions for this to work reliably. All it did
was postpone version compatibility problems until the specific codepaths were executed
at runtime. This was actually a backward step in terms of fast detection of compatibility
problems.

3.8.2.3. Missing Method in a Jackson Class

This is usually caused by version mismatches between Jackson JARs on the classpath. All
Jackson JARs on the classpath must be of the same version.

3.8.3. Connectivity Problems

You may encounter the following S3 connectivity issues.

3.8.3.1. Unable to Execute HTTP Request: Read Timed Out

A read timeout means that the S3A client could not talk to the S3 service, and eventually
gave up trying:

Unable to execute HTTP request: Read timed out
java.net.SocketTimeoutException: Read timed out
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
 at java.net.SocketInputStream.read(SocketInputStream.java:170)
 at java.net.SocketInputStream.read(SocketInputStream.java:141)
 at org.apache.http.impl.io.AbstractSessionInputBuffer.
fillBuffer(AbstractSessionInputBuffer.java:166)
 at org.apache.http.impl.io.SocketInputBuffer.fillBuffer(SocketInputBuffer.
java:90)
 at org.apache.http.impl.io.AbstractSessionInputBuffer.
readLine(AbstractSessionInputBuffer.java:281)
 at org.apache.http.impl.conn.DefaultHttpResponseParser.
parseHead(DefaultHttpResponseParser.java:92)
 at org.apache.http.impl.conn.DefaultHttpResponseParser.
parseHead(DefaultHttpResponseParser.java:62)
 at org.apache.http.impl.io.AbstractMessageParser.
parse(AbstractMessageParser.java:254)
 at org.apache.http.impl.AbstractHttpClientConnection.
receiveResponseHeader(AbstractHttpClientConnection.java:289)
 at org.apache.http.impl.conn.DefaultClientConnection.
receiveResponseHeader(DefaultClientConnection.java:252)
 at org.apache.http.impl.conn.ManagedClientConnectionImpl.
receiveResponseHeader(ManagedClientConnectionImpl.java:191)
 at org.apache.http.protocol.HttpRequestExecutor.
doReceiveResponse(HttpRequestExecutor.java:300)
 at com.amazonaws.http.protocol.SdkHttpRequestExecutor.
doReceiveResponse(SdkHttpRequestExecutor.java:66)
 at org.apache.http.protocol.HttpRequestExecutor.
execute(HttpRequestExecutor.java:127)
 at org.apache.http.impl.client.DefaultRequestDirector.
createTunnelToTarget(DefaultRequestDirector.java:902)
 at org.apache.http.impl.client.DefaultRequestDirector.
establishRoute(DefaultRequestDirector.java:821)
 at org.apache.http.impl.client.DefaultRequestDirector.
tryConnect(DefaultRequestDirector.java:647)
 at org.apache.http.impl.client.DefaultRequestDirector.
execute(DefaultRequestDirector.java:479)

Hortonworks Data Platform December 15, 2017

39

 at org.apache.http.impl.client.AbstractHttpClient.
execute(AbstractHttpClient.java:906)
 at org.apache.http.impl.client.AbstractHttpClient.
execute(AbstractHttpClient.java:805)
 at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.
java:384)
 at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:232)
 at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.
java:3528)
 at com.amazonaws.services.s3.AmazonS3Client.getObject(AmazonS3Client.
java:1111)
 at org.apache.hadoop.fs.s3a.S3AInputStream.reopen(S3AInputStream.java:91)

This is not uncommon in Hadoop client applications — there is a whole wiki entry dedicated
to possible causes of the error.

For S3 connections, key causes are:

• The S3 endpoint property fs.s3a.endpoint for the target bucket is invalid.

• There's a proxy setting for the S3 client, and the proxy is not reachable or is on a different
port.

• The caller is on a host with fundamental connectivity problems. If a VM is on EC2,
consider releasing it and requesting a new one.

3.8.3.2. Bad Request Exception When Working with S3 Frankfurt, Seoul,
or Elsewhere

S3 Frankfurt and Seoul only support the V4 authentication API. Consequently, any requests
using the V2 API will be rejected with 400 Bad Request:

$ bin/hadoop fs -ls s3a://frankfurt/
WARN s3a.S3AFileSystem:Client: Amazon S3 error 400: 400 Bad Request; Bad
 Request (retryable)

com.amazonaws.services.s3.model.AmazonS3Exception: Bad Request
 (Service: Amazon S3; Status Code:400; Error Code:400 Bad Request;
 Request ID:923C5D9E75E44C06), S3 Extended Request ID: HDwje6k
+ANEeDsM6aJ8+D5gUmNAMguOk2BvZ8PH3g9z0gpH+IuwT7N19oQOnIr5CIx7Vqb/uThE=
 at com.amazonaws.http.AmazonHttpClient.
handleErrorResponse(AmazonHttpClient.java:1182)
 at com.amazonaws.http.AmazonHttpClient.executeOneRequest(AmazonHttpClient.
java:770)
 at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.
java:489)
 at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:310)
 at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.
java:3785)
 at com.amazonaws.services.s3.AmazonS3Client.headBucket(AmazonS3Client.
java:1107)
 at com.amazonaws.services.s3.AmazonS3Client.
doesBucketExist(AmazonS3Client.java:1070)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.
verifyBucketExists(S3AFileSystem.java:307)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.
java:284)
 at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2793)

https://wiki.apache.org/hadoop/SocketTimeout
https://wiki.apache.org/hadoop/SocketTimeout
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Hortonworks Data Platform December 15, 2017

40

 at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:101)
 at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2830)
 at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2812)
 at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:389)
 at org.apache.hadoop.fs.Path.getFileSystem(Path.java:356)
 at org.apache.hadoop.fs.shell.PathData.expandAsGlob(PathData.java:325)
 at org.apache.hadoop.fs.shell.Command.expandArgument(Command.java:235)
 at org.apache.hadoop.fs.shell.Command.expandArguments(Command.java:218)
 at org.apache.hadoop.fs.shell.FsCommand.processRawArguments(FsCommand.
java:103)
 at org.apache.hadoop.fs.shell.Command.run(Command.java:165)
 at org.apache.hadoop.fs.FsShell.run(FsShell.java:315)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:90)
 at org.apache.hadoop.fs.FsShell.main(FsShell.java:373)
ls: doesBucketExist on frankfurt-new: com.amazonaws.services.s3.model.
AmazonS3Exception:
 Bad Request (Service: Amazon S3; Status Code:400; Error Code:400 Bad
 Request;

This happens when you are trying to work with any S3 service which only supports the "V4"
signing API — and the client is configured to use the default S3A service endpoint.

To avoid this error, set the specific endpoint to use via the fs.s3a.endpoint property.
For more information, refer to Configuring Per-Bucket Settings to Access Data Around the
World.

3.8.3.3. Error Message "The bucket you are attempting to access must
be addressed using the specified endpoint"

This surfaces when fs.s3a.endpoint is configured to use S3 service endpoint which
is neither the original AWS one (s3.amazonaws.com) nor the one where the bucket is
hosted.

org.apache.hadoop.fs.s3a.AWSS3IOException: purging multipart uploads on
 landsat-pds:
 com.amazonaws.services.s3.model.AmazonS3Exception:
 The bucket you are attempting to access must be addressed usingthe specified
 endpoint.
 Please send all future requests to this endpoint.
 (Service: Amazon S3; Status Code: 301; Error Code: PermanentRedirect;
 Request ID: 5B7A5D18BE596E4B),
 S3 Extended Request ID: uE4pbbmpxi8Nh7rycS6GfIEi9UH/SWmJfGtM9IeKvRyBPZp/
hN7DbPyz272eynz3PEMM2azlhjE=:

 at com.amazonaws.http.AmazonHttpClient.
handleErrorResponse(AmazonHttpClient.java:1182)
 at com.amazonaws.http.AmazonHttpClient.executeOneRequest(AmazonHttpClient.
java:770)
 at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.
java:489)
 at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:310)
 at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.
java:3785)
 at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.
java:3738)
 at com.amazonaws.services.s3.AmazonS3Client.
listMultipartUploads(AmazonS3Client.java:2796)

Hortonworks Data Platform December 15, 2017

41

 at com.amazonaws.services.s3.transfer.TransferManager.
abortMultipartUploads(TransferManager.java:1217)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.
initMultipartUploads(S3AFileSystem.java:454)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.
java:289)
 at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2715)
 at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:96)
 at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2749)
 at org.apache.hadoop.fs.FileSystem$Cache.getUnique(FileSystem.java:2737)
 at org.apache.hadoop.fs.FileSystem.newInstance(FileSystem.java:430)

To resolve the issue, use the specific endpoint of the bucket's S3 service. Using the explicit
endpoint for the region is recommended for speed and the ability to use the V4 signing
API.

If not using "V4" authentication, you can use the original S3 endpoint:

<property>
 <name>fs.s3a.endpoint</name>
 <value>s3.amazonaws.com</value>
</property>

3.8.4. Errors During Delete or Rename of Files

The MultiObjectDeleteException error may occur when deleting or renaming files:

Exception in thread "main" com.amazonaws.services.s3.model.
MultiObjectDeleteException:
 Status Code: 0, AWS Service: null, AWS Request ID: null, AWS Error Code:
 null,
 AWS Error Message: One or more objects could not be deleted, S3 Extended
 Request ID: null
 at com.amazonaws.services.s3.AmazonS3Client.deleteObjects(AmazonS3Client.
java:1745)

This error happens when you are trying to delete multiple objects but one of the objects
cannot be deleted. Typically, this is due to the fact that the caller lacks the permission to
delete these objects. This error should not occur just because the objects are missing.

To resolve the issue, consult the log to see the specifics of which objects could not be
deleted. Determine whether or not you have the permission to do so.

If the operation is failing for reasons other than the caller lacking permissions:

1. Try setting fs.s3a.multiobjectdelete.enable to "false".

2. Consult HADOOP-11572 for up-to-date advice.

3.8.5. Errors Related to Visible S3A Inconsistency

S3 is an eventually consistent object store. That is, it is not a filesystem. It offers read-
after-create consistency, which means that a newly created file is immediately visible.
Except, there is a small quirk: a negative GET may be cached, such that even if an object is
immediately created, the fact that there "wasn't" an object is still remembered.

https://issues.apache.org/jira/browse/HADOOP-11572

Hortonworks Data Platform December 15, 2017

42

That means the following sequence on its own will be consistent:

touch(path) -> getFileStatus(path)

But this sequence may be inconsistent:

getFileStatus(path) -> touch(path) -> getFileStatus(path)

A common source of visible inconsistencies is that the S3 metadata database — the part of
S3 which serves list requests — is updated asynchronously. Newly added or deleted files may
not be visible in the index, even though direct operations on the object (HEAD and GET)
succeed.

In S3A, that means that the getFileStatus() and open() operations are more likely
to be consistent with the state of the object store than any directory list operations
(listStatus(), listFiles(), listLocatedStatus(), listStatusIterator()).

The following errors may be related to eventual consistency of S3.

FileNotFoundException, Even Though the File Was Just Written

This can be a sign of consistency problems. It may also surface if there is some asynchronous
file write operation still in progress in the client: the operation has returned, but the
write has not yet completed. While the S3A client code does block during the close()
operation, we suspect that asynchronous writes may be taking place somewhere in the
stack; This could explain why parallel tests fail more often than serialized tests.

File Not Found in a Directory Listing, Even Though getFileStatus() Finds It

File was not found in a directory listing, even though getFileStatus() finds it — or a
deleted file is found in listing, even though getFileStatus() reports that it is not there.

This is a visible sign of updates to the metadata server, which is lagging behind the state of
the underlying filesystem.

File Not Visible/Saved

The files in an object store are not visible until the write has been completed. In-progress
writes are simply saved to a local file/cached in RAM and only uploaded at the end of
a write operation. If a process terminated unexpectedly, or failed to call the close()
method on an output stream, the pending data will have been lost.

File flush() and hflush() Calls Do Not Save Data to S3A

Again, this is due to the fact that the data is cached locally until the close() operation.
The S3A filesystem cannot be used as a store of data if it is required that the data is
persisted durably after everyflush()/hflush() call. This includes resilient logging,
HBase-style journaling and the like. The standard strategy here is to save to HDFS and then
copy to S3.

3.8.6. Troubleshooting S3-SSE

Refer to this section when troubleshooting S3-SSE.

Hortonworks Data Platform December 15, 2017

43

3.8.6.1. AccessDeniedException When Creating Directories and Files

Operations such as creating directories (mkdir()/innerMkdirs()) or files fail when
trying to create a file or directory in an object store where the bucket permission requires
encryption of a specific type, and the client is not configured to use this specific encryption
mechanism.

To resolve the issue, you must configure the client to use the encryption mechanism that
you specified in the bucket permissions.

java.nio.file.AccessDeniedException: /test: innerMkdirs on /test: com.
amazonaws.services.s3.model.AmazonS3Exception: Access Denied (Service:
 Amazon S3; StatusCode: 403; ErrorCode: AccessDenied; RequestID:
 398EB3738450B416), S3 Extended Request ID: oOcNg+RvbS5YaJ7EQNXVZnHOF/
7fwwhCzyRCjFF+UKLRi3slkobphLt/M+n4KPw5cljSSt2f6/E= at org.apache.hadoop.fs.
s3a.S3AUtils.translateException(S3AUtils.java:158) at org.apache.hadoop.fs.
s3a.S3AUtils.translateException(S3AUtils.java:101) at org.apache.hadoop.fs.
s3a.S3AFileSystem.mkdirs(S3AFileSystem.java:1528) at org.apache.hadoop.fs.
FileSystem.mkdirs(FileSystem.java:2216) Caused by: com.amazonaws.services.
s3.model.AmazonS3Exception: Access Denied (Service: Amazon S3; StatusCode:
 403; ErrorCode: AccessDenied; RequestID: 398EB3738450B416) at com.amazonaws.
http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.
java:1586) at com.amazonaws.http.AmazonHttpClient$RequestExecutor.
executeOneRequest(AmazonHttpClient.java:1254) at com.amazonaws.http.
AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.
java:1035) at com.amazonaws.http.AmazonHttpClient$RequestExecutor.
doExecute(AmazonHttpClient.java:747) at com.amazonaws.http.AmazonHttpClient
$RequestExecutor.executeWithTimer(AmazonHttpClient.java:721) at com.
amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.
java:704) at com.amazonaws.http.AmazonHttpClient$RequestExecutor.access
$500(AmazonHttpClient.java:672) at com.amazonaws.http.AmazonHttpClient
$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:654) at com.
amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:518) at com.
amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4185) at
 com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4132)
 at com.amazonaws.services.s3.AmazonS3Client.putObject(AmazonS3Client.
java:1712) at com.amazonaws.services.s3.transfer.internal.UploadCallable.
uploadInOneChunk(UploadCallable.java:133) at com.amazonaws.services.s3.
transfer.internal.UploadCallable.call(UploadCallable.java:125) at com.
amazonaws.services.s3.transfer.internal.UploadMonitor.call(UploadMonitor.
java:139) at com.amazonaws.services.s3.transfer.internal.UploadMonitor.
call(UploadMonitor.java:47) at java.util.concurrent.FutureTask.
run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.
runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.
ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.
Thread.run(Thread.java:745)

3.8.6.2. AES256 Is Enabled but an Encryption Key Was Set in
fs.s3a.server-side-encryption.key

You will see this error when the encryption mechanism is set to SSE-S3/AES-256 but the
configuration also declares an encryption key. The error happens because user-supplied
keys are not supported in SSE-S3. Remove the fs.s3a.server-side-encryption.key
setting or switch to SSE-KMS encryption.

testEncryption(org.apache.hadoop.fs.s3a.
ITestS3AEncryptionSSECBlockOutputStream) Time elapsed: 0.103 sec <<< ERROR!

Hortonworks Data Platform December 15, 2017

44

java.io.IOException: AES256 is enabled but an encryption key was set in fs.
s3a.server-side-encryption.key (key length = 44)
 at org.apache.hadoop.fs.s3a.S3AUtils.getEncryptionAlgorithm(S3AUtils.
java:758)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.initialize(S3AFileSystem.
java:260)
 at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:3242)
 at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:467)
 at org.apache.hadoop.fs.contract.AbstractBondedFSContract.
init(AbstractBondedFSContract.java:72)
 at org.apache.hadoop.fs.contract.AbstractFSContractTestBase.
setup(AbstractFSContractTestBase.java:177)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.
java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.
invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at org.junit.runners.model.FrameworkMethod$1.
runReflectiveCall(FrameworkMethod.java:47)
 at org.junit.internal.runners.model.ReflectiveCallable.
run(ReflectiveCallable.java:12)
 at org.junit.runners.model.FrameworkMethod.
invokeExplosively(FrameworkMethod.java:44)
 at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.
java:24)
 at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.
java:27)
 at org.junit.rules.TestWatcher$1.evaluate(TestWatcher.java:55)
 at org.junit.internal.runners.statements.FailOnTimeout$StatementThread.
run(FailOnTimeout.java:74)

3.8.6.3. Unknown Server Side Encryption Algorithm

This error means that the algorithm is unknown or mistyped; here "SSE_C" was used rather
than "SSE-C":

java.io.IOException: Unknown Server Side Encryption algorithm SSE_C
 at org.apache.hadoop.fs.s3a.S3AEncryptionMethods.
getMethod(S3AEncryptionMethods.java:67)
 at org.apache.hadoop.fs.s3a.S3AUtils.getSSEncryptionAlgorithm(S3AUtils.
java:760)

Make sure to enter the correct algorithm name.

Hortonworks Data Platform December 15, 2017

45

4. Getting Started with ADLS
Azure Data Lake Store (ADLS) is a file system designed for use as a hyper-scale repository
for big data analytic workloads.

The features of ADLS include:

• Hierarchical filesystem containing folders, which in turn contain data stored as files.

• Provides unlimited storage without imposing any limits on account sizes, file sizes, or the
amount of data that can be stored in a data lake.

• Compatible with Hadoop Distributed File System (HDFS).

• Can be accessed by Hadoop application via the WebHDFS-compatible REST APIs or the
ADLS connector.

• Uses Azure Active Directory (AAD) for identity and access management.

For more general information on ADLS, refer to Get Started with Azure Data Lake Store
Using the Azure Portal in Azure documentation.

Overview of Configuring and Using ADLS with HDP

The following table provides an overview of tasks related to configuring and using HDP
with ADLS. Click on the linked topics to get more information about specific tasks.

Task Description

Meet the prerequisites To use ADLS storage, you must have:

1. An Azure subscription for Data Lake Store.

2. An ADLS account. For instructions on how to create one, refer
to Microsoft Azure documentation.

Configure authentication In order for Hadoop applications to access data stored in your
ADLS account, you must configure authentication with the ADLS
account using either a client credential (analogous to a service
principal) or a refresh token (associated with a user).

We recommend that you use the simpler client credential method.

Configure optional features:

• Configuring User and Group
Representation [49]

You can optionally configure how user and group information is
represented during getFileStatus(), listStatus(), and
getAclStatus() calls.

Work with ADLS data:

• Referencing ADLS in the URLs [49]

• Access data with Hive or Spark

• Copy data with DistCp

Once you've configured authentication with your data lake, you
can access ADLS data from Hive (via external tables) and Spark,
and perform other related tasks such as copying data between
HDFS and ADLS when needed.

4.1. Configuring Authentication with ADLS
In order to access data in your data lake store, you must configure authentication with
ADLS via Azure Active Directory (Azure AD). Azure uses Azure AD as a multi-tenant cloud-

https://azure.microsoft.com/en-in/documentation/articles/data-lake-store-get-started-portal/
https://azure.microsoft.com/en-in/documentation/articles/data-lake-store-get-started-portal/
https://docs.microsoft.com/en-in/azure/data-lake-store/data-lake-store-get-started-portal

Hortonworks Data Platform December 15, 2017

46

based directory and identity management service. For more information, refer to What is
Active Directory.

You can configure authentication with ADLS by using either a client credential (analogous
to a service principal) or a refresh token (associated with a user). We recommend that you
use the simpler client credential method.

4.1.1. Using Client Credential

To configure authentication with ADLS using the client credential, you must register a new
application with Active Directory service and then give your application access to your ADL
account. After you've performed these steps, you can configure your core-site.xml.

Note

For more detailed instructions including screenshots refer to How to Configure
Authentication with ADLS blog post.

Prerequisites

In one of the steps, you will be required to assign the Owner role to your application. If you
do not have sufficient permissions, the role assignment step may have to be performed by
your Azure admin.

Register an Application

If you already have your application registered with Active Directory, simply obtain the
parameters listed in step 7 below. If you are starting from scratch, perform all the steps:

1. Log in to the Azure Portal.

2. Navigate to your Active Directory and then select App Registrations.

3. Create a new web application by clicking on +New application registration.

4. Specify an application name, type (Web app/API), and sign-on URLs.

Remember the application name: you will later add it to your ADLS account as an
authorized user.

5. Once an application is created, navigate to the application configuration and find the
Keys in the application's settings.

6. Create a key by entering key description, selecting a key duration, and then clicking
Save.

Make sure to copy and save the key value. You won't be able to retrieve it after you
leave the page.

7. Note down the properties that you will need to authenticate:

Parameter How to obtain it

Application ID You can find it in your application's settings.

https://azure.microsoft.com/en-in/documentation/articles/active-directory-whatis/
https://azure.microsoft.com/en-in/documentation/articles/active-directory-whatis/
https://community.hortonworks.com/articles/105994/how-to-configure-authentication-with-adls.html
https://community.hortonworks.com/articles/105994/how-to-configure-authentication-with-adls.html
https://portal.azure.com/

Hortonworks Data Platform December 15, 2017

47

Parameter How to obtain it

This will be your fs.adl.oauth2.client.id

Key This is the key that you generated for your application. If
you did not copy the it, you must create a new key from
the Keys page in your application's settings.

This will be your fs.adl.oauth2.credential

Token endpoint You can obtain this from the App
Registrations>Endpoints page by copying the OAUTH
2.0 TOKEN ENDPOINT value.

This will be your fs.adl.oauth2.refresh.url

Add the Application to your Data Lake Store Account

If you are planning to use multiple Data Lake Store accounts, perform these steps for each
account.

1. Log in to the Azure Portal.

2. If you don't have a Data Lake Store account, create one.

3. Navigate to your Data Lake Store account and then select Access Control (IAM).

4. Click on +Add to add role-based permissions.

5. Under Role select the "Owner". Under Select, select your application.

This will grant the "Owner" role for this ADL account to your application.

Configure core-site.xml

Add the following four properties to your core-site.xml. While
fs.adl.oauth2.access.token.provider.type must be set to “ClientCredential”,
you can obtain the remaining three parameters from step 7 above.

<property>
 <name>fs.adl.oauth2.access.token.provider.type</name>
 <value>ClientCredential</value>
</property>

<property>
 <name>fs.adl.oauth2.client.id</name>
 <value>APPLICATION-ID</value>
</property>

<property>
 <name>fs.adl.oauth2.credential</name>
 <value>KEY</value>
</property>

<property>
 <name>fs.adl.oauth2.refresh.url</name>
 <value>TOKEN-ENDPOINT</value>
</property>

Next Steps

https://portal.azure.com/

Hortonworks Data Platform December 15, 2017

48

To protect these credentials, we recommend that you use the credential provider
framework to securely store and access your credentials.

To make sure that authentication works, try referencing ADLS in the URLs.

4.1.2. Using Token-Based Authentication
To use token-based authentication:

1. Obtain a valid OAuth2 bearer token from the Azure Active Directory service for those
valid users who have access to Azure Data Lake Storage account. The token must be
obtained for a specific client ID in the application code. For more information, refer to
Active Directory Library For Java.

2. Add the following properties to your core-site.xml:

<property>
 <name>fs.adl.oauth2.access.token.provider.type</name>
 <value>RefreshToken</value>
</property>

<property>
 <name>fs.adl.oauth2.client.id</name>
 <value>CLIENT-ID</value>
</property>

<property>
 <name>fs.adl.oauth2.refresh.token</name>
 <value>REFRESH-TOKEN</value>
</property>

Se the value of fs.adl.oauth2.access.token.provider.type to
"RefreshToken" and set the other two parameters.

Note

Do not share the client ID or the refresh token. They must be kept secret.

Next Steps

To make sure that authentication works, try referencing ADLS in the URLs.

4.1.3. Protecting the Azure Credentials for ADLS with
Credential Providers

All ADLS credential properties can be protected by credential providers.

To provision the credentials:

hadoop credential create fs.adl.oauth2.client.id -value 123
 -provider localjceks://file/home/foo/adls.jceks
hadoop credential create fs.adl.oauth2.refresh.token -value 123
 -provider localjceks://file/home/foo/adls.jceks

Next, configure the following configuration properties, either on the command line or in
the core-site.xml configuration file:

https://github.com/AzureAD/azure-activedirectory-library-for-java

Hortonworks Data Platform December 15, 2017

49

<property>
 <name>fs.adl.oauth2.access.token.provider.type</name>
 <value>RefreshToken</value>
</property>
<property>
 <name>hadoop.security.credential.provider.path</name>
 <value>localjceks://file/home/foo/adls.jceks</value>
</property>

The hadoop.security.credential.provider.path should indicate the path to
interrogate for protected credentials.

You may optionally add the provider path property to the distcp command line instead
of adding a job-specific configuration to a generic core-site.xml. The options enclosed
in square brackets illustrate this capability.

hadoop distcp
 [-D fs.adl.oauth2.access.token.provider.type=RefreshToken
 -D hadoop.security.credential.provider.path=localjceks://file/home/user/
adls.jceks]
 hdfs://<NameNode Hostname>:9001/user/foo/srcDir
 adl://<Account Name>.azuredatalakestore.net/tgtDir/

Related Links

Credential Provider API

4.2. Referencing ADLS in the URLs
Regardless of which specific Hadoop ecosystem application you are using, you can access
data stored in ADLS using the URI starting with the adl:// prefix.

The URL structure is:

adl://<data_lake_store_name>.azuredatalakestore.net/dir/file

For example, to access "testfile" located in a directory called "testdir", stored in a data lake
store called "mytest", the URL is:

adl://mytest.azuredatalakestore.net/testdir/testfile

The following FileSystem shell commands demonstrate access to a data lake store named
mytest:

hadoop fs -ls adl://mytest.azuredatalakestore.net/

hadoop fs -mkdir adl://mytest.azuredatalakestore.net/testDir

hadoop fs -put testFile adl://mytest.azuredatalakestore.net/testDir/testFile

hadoop fs -cat adl://mytest.azuredatalakestore.net/testDir/testFile
test file content

4.3. Configuring User and Group Representation
HDP allows you to configure how user and group information is represented during
getFileStatus(), listStatus(), and getAclStatus() calls. You can configure this
by adding the following property to core-site.xml:

https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/site/markdown/CredentialProviderAPI.md

Hortonworks Data Platform December 15, 2017

50

<property>
 <name>adl.feature.ownerandgroup.enableupn</name>
 <value>true</value>
</property>

When set to "true", user and group in the FileStatus/AclStatus response is represented as a
user-friendly name as per Azure AD profile. When set to "false" (default), user and group
in the FileStatus/AclStatus response is represented by the unique identifier from Azure AD
profile (Object ID as GUID).

For best performance we recommended using the default value.

Hortonworks Data Platform December 15, 2017

51

5. Getting Started with WASB
Windows Azure Storage Blob (WASB) is a general-purpose object store.

The features of WASB include:

• Object store with flat namespace.

• Storage account consists of containers, which in turn have data in the form of blobs.

• Authentication based on shared secrets - Account Access Keys (for account-level
authorization) and Shared Access Signature Keys (for account, container, or blob
authorization).

Overview of Configuring and Using WASB with HDP

The following table provides an overview of tasks related to configuring and using HDP
with WASB. Click on the linked topics to get more information about specific tasks.

Task Description

Meet the prerequisites To use Azure Blob Storage, you must have:

1. An Azure subscription for Storage Blobs.

2. A storage account. For instructions on how to create one, refer
to Microsoft Azure documentation.

Configure authentication In order to access data in an WASB account, you must configure
authentication with the WASB account by providing the access key.

Configure optional features:

• Configuring Page Blob Support [54]

• Configuring Atomic Folder Rename [54]

• Configuring Support for Append API [55]

• Configuring Multithread Support [55]

• Configuring WASB Secure Mode [56]

• Configuring Authorization Support in
WASB [57]

You can optionally configure these additional features.

Work with WASB data:

• Referencing WASB in the URLs [53]

• Access data with Hive or Spark

• Copy data with DistCp

Once you've configured authentication with your blob storage
account, you can access data stored in this account from Hive (via
external tables) and Spark, and perform other related tasks such as
copying data between HDFS and WASB when needed.

5.1. Configuring Authentication with WASB
In order to access data stored in your Azure blob storage account, you must configure your
storage account access key in core-site.xml. The configuration property that you must
use is fs.azure.account.key.<account name>.blob.core.windows.net and
the value is the access key.

For example the following property should be used for a storage account called
"testaccount":

https://docs.microsoft.com/en-us/azure/storage/storage-create-storage-account#create-a-storage-account

Hortonworks Data Platform December 15, 2017

52

<property>
 <name>fs.azure.account.key.testaccount.blob.core.windows.net</name>
 <value>TESTACCOUNT-ACCESS-KEY</value>
</property>

You can obtain your access key from the Access keys in your storage account settings.

Note

For more detailed instructions including screenshots refer to How to Configure
Authentication with WASB blog post.

Next Steps

To protect your access key, we recommend that you use the credential provider framework
to securely store and access your credentials. You may also protect the Azure credentials
within an encrypted file.

To make sure that authentication works, try referencing WASB in the URLs.

5.1.1. Protecting the Azure Credentials for WASB with
Credential Providers

To protect your credentials from unauthorized users, we recommend that you use the
credential provider framework which securely stores your credentials and allows you to
securely access them.

To provision the credentials:

% hadoop credential create fs.azure.account.key.youraccount.blob.core.windows.
net -value 123
 -provider localjceks://file/home/lmccay/wasb.jceks

Next, configure the following configuration properties, either on the command line or in
the core-site.xml configuration file:

<property>
 <name>hadoop.security.credential.provider.path</name>
 <value>localjceks://file/home/lmccay/wasb.jceks</value>
 <description>Path to interrogate for protected credentials.</description>
</property>

You may optionally add the provider path property to the distcp command line instead
of adding a job-specific configuration to a generic core-site.xml. The options enclosed
in square brackets illustrate this capability.

% hadoop distcp
 [-D hadoop.security.credential.provider.path=localjceks://file/home/
lmccay/wasb.jceks]
 hdfs://hostname:9001/user/lmccay/007020615 wasb://
yourcontainer@youraccount.blob.core.windows.net/testDir/

You may also protect the Azure credentials within an encrypted file.

Related Links

https://community.hortonworks.com/articles/105996/how-to-configure-authentication-with-wasb.html
https://community.hortonworks.com/articles/105996/how-to-configure-authentication-with-wasb.html

Hortonworks Data Platform December 15, 2017

53

Credential Provider API

5.1.1.1. Protecting the Azure Credentials for WASB within an Encrypted
File

In addition to using the credential provider framework to protect your credentials, it is
also possible to configure it in an encrypted form. An additional configuration property
fs.azure.shellkeyprovider.script specifies an external program to be invoked
by Hadoop processes to decrypt the key. The encrypted key value is passed to this external
program as a command line argument:

<property>
 <name>fs.azure.account.keyprovider.youraccount</name>
 <value>org.apache.hadoop.fs.azure.ShellDecryptionKeyProvider</value>
</property>

<property>
 <name>fs.azure.account.key.youraccount.blob.core.windows.net</name>
 <value>YOUR ENCRYPTED ACCESS KEY</value>
</property>

<property>
 <name>fs.azure.shellkeyprovider.script</name>
 <value>PATH TO DECRYPTION PROGRAM</value>
</property>

5.2. Referencing WASB in the URLs
Regardless of which specific Hadoop ecosystem application you are using, you can access
data stored in WASB using the URL starting with the wasb:// prefix.

The URL structure is:

wasb://<container_name>@<storage_account_name>.blob.core.windows.net/dir/file

For example, to access a file called "testfile" located in a directory called "testdir", stored in
the container called "testcontainer" on the account called "hortonworks", the URL is:

wasb://testcontainer@hortonworks.blob.core.windows.net/testdir/testfile

You can also use wasbs prefix to utilize SSL-encrypted HTTPS access:

wasbs://<container_name>@<storage_account_name>.blob.core.windows.net/dir/file

For example, the following Hadoop FileSystem shell commands demonstrate access to a
storage account named myaccount and a container named mycontainer:

hadoop fs -ls wasb://mycontainer@myaccount.blob.core.windows.net/

hadoop fs -mkdir wasb://mycontainer@myaccount.blob.core.windows.net/testDir

hadoop fs -put testFile wasb://mycontainer@myaccount.blob.core.windows.net/
testDir/testFile

hadoop fs -cat wasb://mycontainer@myaccount.blob.core.windows.net/testDir/
testFile
test file content

https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/site/markdown/CredentialProviderAPI.md

Hortonworks Data Platform December 15, 2017

54

5.3. Configuring Page Blob Support
The Azure Blob Storage interface for Hadoop supports two kinds of blobs, block blobs and
page blobs.

Block blobs, which are used by default, are suitable for most big-data use cases such as
input data for Hive, Pig, analytical map-reduce jobs, and so on.

Page blobs can be up to 1TB in size, larger than the maximum 200GB size for block blobs.
Their primary use case is in the context of HBase write-ahead logs. This is because page
blobs can be written any number of times, whereas block blobs can only be appended up
to 50,000 times, at which point you run out of blocks and your writes fail. This wouldn't
work for HBase logs, so page blob support was introduced to overcome this limitation.

1. In order to have the files that you create be page blobs, you must set the configuration
variable fs.azure.page.blob.dir in core-site.xml to a comma-separated list of
folder names. For example:

<property>
 <name>fs.azure.page.blob.dir</name>
 <value>/hbase/WALs,/hbase/oldWALs,/data/mypageblobfiles</value>
</property>

To make all files page blobs, you can simply set this to /.

2. You can set two additional configuration properties related to page blobs. You can also
set them in core-site.xml:

• The configuration option fs.azure.page.blob.size defines the default initial size
for a page blob. The parameter value is an integer specifying the number of bytes. It
must be 128MB or greater, but no more than 1TB.

• The configuration option fs.azure.page.blob.extension.size defines the page
blob extension size. This determines the amount by which to extend a page blob when it
becomes full. The parameter value is an integer specifying the number of bytes. It must
be 128MB or greater, specified as an integer number of bytes.

5.4. Configuring Atomic Folder Rename
The Azure Blob Storage stores files in a flat key/value store without formal support for
folders. The hadoop-azure file system layer simulates folders on top of Azure storage. By
default, folder rename in the hadoop-azure file system layer is not atomic. This means
that a failure during a folder rename could potentially leave some folders in the original
directory and some in the new one.

Since HBase depends on atomic folder rename, a configuration setting called
fs.azure.atomic.rename.dir can be set in core-site.xml to specify a comma-
separated list of directories where folder rename is made atomic. If a folder rename fails, a
redo will be applied to finish. A file <folderName>-renamePending.json may appear
temporarily and is the record of the intention of the rename operation, to allow redo in
event of a failure.

http://msdn.microsoft.com/en-us/library/azure/ee691964.aspx
http://msdn.microsoft.com/en-us/library/azure/ee691964.aspx

Hortonworks Data Platform December 15, 2017

55

The default value of this setting is just /hbase. To list multiple directories, separate them
with a comma. For example:

<property>
 <name>fs.azure.atomic.rename.dir</name>
 <value>/hbase,/data</value>
</property>

5.5. Configuring Support for Append API
The Azure Blob Storage interface for Hadoop includes optional support for Append API for
single writer.

To enable it, set the configuration fs.azure.enable.append.support to "true" in
core-site.xml:

<property>
 <name>fs.azure.enable.append.support</name>
 <value>true</value>
</property>

Note

Append support in Azure Blob Storage interface differs from HDFS semantics: it
does not enforce single writer internally but requires applications to guarantee
this semantic. It becomes a responsibility of the application either to ensure
single-threaded handling for a particular file path, or to rely on some external
locking mechanism of its own. Failure to do so will result in an unexpected
behavior.

5.6. Configuring Multithread Support
Rename and delete blob operations on directories with a large number of files and sub
directories are currently very slow as these operations are done serially, one blob at
a time. These files and sub-folders can be deleted or renamed parallel. The following
configurations can be used to enable threads to do parallel processing:

Delete

To enable 10 threads for delete operation, set the following configuration value in core-
site.xml:

<property>
 <name>fs.azure.delete.threads</name>
 <value>10</value>
</property>

To disable threads, set it to 0 or 1. The default behavior is threads disabled.

Rename

To enable 20 threads for "rename" operation, set the following configuration value in
core-site.xml:

Hortonworks Data Platform December 15, 2017

56

<property>
 <name>fs.azure.rename.threads</name>
 <value>20</value>
</property>

To disable threads, set it to 0 or 1. The default behavior is threads disabled.

5.7. Configuring WASB Secure Mode
WASB can operate in secure mode, where the storage access keys required to communicate
with Azure storage do not have to be in the same address space as the process using
WASB. In this mode, all interactions with Azure storage are performed using SAS URIs.
There are two sub-modes within the secure mode:

• (Option 1) The remote SAS key mode, where the SAS keys are generated from a remote
process

• (Option 2) The local mode, where SAS keys are generated within WASB.

By default, the SAS key mode is expected to run in the remote mode; however, for testing
purposes the local mode can be enabled to generate SAS keys in the same process as
WASB.

To enable the secure mode, set the following property in core-site.xml:

<property>
 <name>fs.azure.secure.mode</name>
 <value>true</value>
</property>

Next, do one of the following, depending on the sub-mode that you are using:

To enable SAS key generation locally (Option 1), set the following property in core-
site.xml:

<property>
 <name>fs.azure.local.sas.key.mode</name>
 <value>true</value>
</property>

To use the remote SAS key generation mode (Option 2), an external REST service is
expected to provided required SAS keys. The following property can set in core-
site.xml to provide the end point to use for remote SAS key generation:

<property>
 <name>fs.azure.cred.service.url</name>
 <value>{URL}</value>
 </property>

The remote service is expected to provide support for two REST calls {URL}/
GET_CONTAINER_SAS and {URL}/GET_RELATIVE_BLOB_SAS, for generating container
and relative blob SAS keys.

Example requests:

{URL}/GET_CONTAINER_SAS?
storage_account=<account_name>&container=<container>&sas_expiry=<expiry

Hortonworks Data Platform December 15, 2017

57

period>&delegation_token=<delegation token> {URL}/
GET_CONTAINER_SAS?
storage_account=<account_name>&container=<container>&relative_path=<relative
path>&sas_expiry=<expiry period>&delegation_token=<delegation
token>

The service is expected to return a response in JSON format:

{
 "responseCode" : 0 or non-zero <int>,
 "responseMessage" : relavant message on failure <String>,
 "sasKey" : Requested SAS Key <String>
}

5.8. Configuring Authorization Support in WASB
To enable authorization support in WASB, set the following property in core-site.xml:

<property>
 <name>fs.azure.authorization</name>
 <value>true</value>
</property>

The current implementation of authorization relies on the presence of an external service
that can enforce the authorization. The service is expected to be running on a URL
provided by the following configuration, which should also be set in core-site.xml:

<property>
 <name>fs.azure.authorization.remote.service.url</name>
 <value>{URL}</value>
</property>

The remote service is expected to provide support for the following REST call: {URL}/
CHECK_AUTHORIZATION

An example request: {URL}/CHECK_AUTHORIZATION?
wasb_absolute_path=<absolute_path>&operation_type=<operation
type>&delegation_token=<delegation token>

The service is expected to return a response in JSON format:

{
 "responseCode" : 0 or non-zero <int>,
 "responseMessage" : relevant message on failure <String>,
 "authorizationResult" : true/false <boolean>
}

Hortonworks Data Platform December 15, 2017

58

6. Accessing Cloud Data in Hive
Datasets stored in S3, ADLS or WASB can be made available in Hive via external tables:

1. Exposing Cloud Data as Hive Tables [58]

2. Populating Partition-Related Information [59]

3. Analyzing Tables [59]

If you are using Ranger to manage Hive authorization, refer to Create a Hive Policy in the
Security Guide to learn how to create Hive policies that include S3 URLs.

To improve performance for Hive with S3, ADLS and WASB, refer to Improving Hive
Performance.

6.1. Exposing Cloud Data as Hive Tables
Datasets stored in S3, ADLS or WASB can be easily made available in Hive as managed or
external tables. The main difference between these two table types is that data linked in an
external table does not get deleted when the table is deleted.

Therefore, external tables are optimal when the data is already present in a cloud storage
service such as S3, ADLS or WASB, which provides longer-term persistence at a lower cost
than attached storage.

External Tables

External tables operate in a similar manner as references. If you create an external table
called "inventory"

CREATE EXTERNAL TABLE `inventory`(
 `inv_item_sk` int,
 `inv_warehouse_sk` int,
 `inv_quantity_on_hand` int)
PARTITIONED BY (
 `inv_date_sk` int) STORED AS ORC
LOCATION
 's3a://BUCKET_NAME/tpcds_bin_partitioned_orc_200.db/inventory';

and then you drop the "inventory" table, the contents of s3a://BUCKET_NAME/
tpcds_bin_partitioned_orc_200.db/inventory will not be deleted. Only the
table definition will be removed from the metastore.

Note that data from a partitioned table is not automatically loaded upon table creation.
To load data, use the MSCK. For more information, refer to Populating Partition-Related
Information.

Managed Tables

Note

The following actions require you to have write access to the S3 bucket.

http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HDP2/HDP-2.6.4/bk_security/content/hive_policy.html

Hortonworks Data Platform December 15, 2017

59

If you create a managed table called “inventory”

CREATE TABLE `inventory`(
 `inv_item_sk` int,
 `inv_warehouse_sk` int,
 `inv_quantity_on_hand` int)
PARTITIONED BY (
 `inv_date_sk` int) STORED AS ORC
LOCATION
 's3a://BUCKET_NAME/tpcds_bin_partitioned_orc_200.db/inventory';

and then you drop the “inventory” table, the contents of s3a://BUCKET_NAME/
tpcds_bin_partitioned_orc_200.db/inventory will be deleted.

6.2. Populating Partition-Related Information
When working with data stored in S3, ADLS or WASB, the steps for populating partition-
related information are the same as when working with data in HDFS.

Creating table definitions does not by itself auto-populate partition-related information
to the metastore. When a dataset available in Amazon S3 is already partitioned, you must
run the MSCK command in order to populate the partition-related information into the
metastore.

For example, consider the following statement:

CREATE EXTERNAL TABLE `inventory`(
 `inv_item_sk` int,
 `inv_warehouse_sk` int,
 `inv_quantity_on_hand` int)
PARTITIONED BY (
 `inv_date_sk` int) STORED AS ORC
LOCATION
 's3a://BUCKET_NAME/tpcds_bin_partitioned_orc_200.db/inventory';

This statement creates a table definition in the metastore, but does not populate the
partition-related information.

To populate the partition-related information, you need to run MSCK REPAIR TABLE
inventory.

You can increase the value of the hive.metastore.fshandler.threads parameter
to increase the number of threads used for scanning the partitions in the MSCK phase
(defaut is 15). This will speed up load if you have hardware capacity.

6.3. Analyzing Tables
When working with data in S3, ADLS or WASB, the steps for analyzing tables are the same
as when working with data in HDFS.

Table statistics can be gathered automatically by setting
hive.stats.autogather=true or by running analyze table test compute
statistics command. For example:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr=11) COMPUTE STATISTICS;

Hortonworks Data Platform December 15, 2017

60

Column statistics are not automatically created. You must manually gather column statistics
by running analyze table test compute statistics for columns command.
For example:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr=11) COMPUTE STATISTICS FOR
 COLUMNS;

6.4. Improving Hive Performance with S3/ADLS/
WASB

Tune the following parameters to improve Hive performance when working with S3, ADLS
or WASB.

Table 6.1. Improving General Performance

Parameter Recommended Setting

yarn.scheduler.capacity.node-locality-
delay

Set this to "0".

hive.warehouse.subdir.inherit.perms Set this to "false" to reduce the number of file permission
checks.

hive.metastore.pre.event.listeners Set this to an empty value to reduce the number of
directory permission checks.

You can set these parameters in hive-site.xml.

Table 6.2. Accelerating ORC Reads in Hive

Parameter Recommended Setting

hive.orc.compute.splits.num.threads If using ORC format and you want improve the split
computation time, you can set the value of this parameter
to match the number of available processors. By default,
this parameter is set to 10.

This parameter controls the number of parallel threads
involved in computing splits. For Parquet computing splits
is still single-threaded, so split computations can take
longer with Parquet and S3/ADLS/WASB.

hive.orc.splits.include.file.footer If using ORC format with ETL file split strategy, you can set
this parameter to "true" in order to use existing file footer
information in split payload.

You can set these parameters using --hiveconf option in Hive CLI or using the set
command in Beeline.

Table 6.3. Accelerating ETL Jobs

Parameter Recommended Setting

hive.metastore.fshandler.threads Query launches can be slightly slower
if there are no stats available or when
hive.stats.fetch.partition.stats=false. In
such cases, Hive ends up looking at file sizes for every file
that it tries to access.

Tuning hive.metastore.fshandler.threads helps
reduce the overall time taken for the metastore operation.

Hortonworks Data Platform December 15, 2017

61

Parameter Recommended Setting

fs.trash.interval Drop table can be slow in object stores such as S3 because
the action involves moving files to trash (a copy + delete).
To remedy this, you can set fs.trash.interval=0 to
completely skip trash.

You can set these parameters using --hiveconf option in Hive CLI or using the set
command in Beeline.

Accelerating Inserts in Hive

When inserting data, Hive moves data from a temporary folder to the final location. This
move operation is actually a copy+delete action, which is expensive in object stores such
as S3; the more data is being written out to the object store, the more expensive the
operation is.

To accelerate the process, you can tune hive.mv.files.thread, depending on the size
of your dataset (default is 15). You can set it in hive-site.xml.

Hortonworks Data Platform December 15, 2017

62

7. Accessing Cloud Data in Spark
Datasets stored in S3, ADLS or WASB can be made available in Spark.

S3, ADLS or WASB are viewed by Spark as filesystems, allowing them to be used as the
source and destination of data of data: be it batch, SQL, DataFrame, or Spark Streaming.
To load and save data in the cloud, Spark uses the same APIs that is used to load and save
data in HDFS or other filesystems.

Provided the relevant libraries are on the classpath, a file stored in S3, ADLS or WASB can
be referenced simply via a URL:

sparkContext.textFile("s3a://landsat-pds/scene_list.gz").count()

Similarly, an RDD can be saved to an object store via saveAsTextFile():

val numbers = sparkContext.parallelize(1 to 1000)
// save to Amazon S3 (or compatible implementation)
numbers.saveAsTextFile("s3a://bucket1/counts")

Example 1: DataFrames

DataFrames can read from and write to object stores using their read() and write()
methods:

import org.apache.spark.SparkConfimport org.apache.spark.sql.
SparkSessionimport org.apache.spark.sql.types.StringTypeval spark =
SparkSession
 .builder
 .appName("DataFrames")
 .config(sparkConf)
 .getOrCreate()
import spark.implicits._
val numRows =1000// generate test dataval sourceData = spark.range(0,
 numRows).select($"id".as("l"), $"id".cast(StringType).as("s"))

// define the destinationval dest ="s3a://bucket1/dataframes"// write the
 dataval orcFile = dest + "/data.orc"
sourceData.write.format("orc").save(orcFile)

// now read it backval orcData = spark.read.format("orc").load(orcFile)

// finally, write the data as Parquet
orcData.write.format("parquet").save(dest + "/data.parquet")

spark.stop()

Note

Checkpointing streaming data to an S3 bucket is very slow, as the stream
data is (potentially) recalculated, uploaded to S3, and then renamed into the
checkpoint file (the rename being a slow copy operation). If S3 is used for
checkpointing, the interval between checkpoints must be long enough to allow
for this slow checkpoint.

Example 2: Spark Streaming and Cloud Storage

Hortonworks Data Platform December 15, 2017

63

Spark Streaming can monitor files added to object stores by creating a
FileInputDStream DStream monitoring path under a bucket:

import org.apache.spark.SparkConfimport org.apache.spark.sql.
SparkSessionimport org.apache.spark.streaming._

val sparkConf =newSparkConf()
val ssc =newStreamingContext(sparkConf, Milliseconds(5000))
try {
 val lines = ssc.textFileStream("s3a://bucket1/incoming")
 val matches = lines.filter(_.endsWith("3"))
 matches.print()
 ssc.start()
 ssc.awaitTermination()
} finally {
 ssc.stop(true)
}

Note

The time to scan for new files is proportional to the number of files under the
path — not the number of new files — so this can become a slow operation.

Related Links

Committing Output to S3 [63]

Improving Spark Performance with S3/ADLS/WASB [63]

7.1. Committing Output to S3
For the reasons covered in Limitations of Amazon S3, using S3 as the direct destination of
work may be slow and unreliable in the presence of failures. Therefore, we recommend
that you use HDFS as the destination of work, using DistCp to copy to S3 afterwards if
you wish to persist beyond the life of the cluster. HDFS has the behaviors critical to the
output committer used by Spark and Hadoop MapReduce to ensure the output is correctly
generated (atomic directory renames and consistent directory listings).

7.2. Improving Spark Performance with S3/ADLS/
WASB

Use the following recommendations to improve Spark performance with cloud data:

• Accelerating ORC and Parquet Reads [63]

• Accelerating Sequential Reads Through Files in S3 [64]

7.2.1. Accelerating ORC and Parquet Reads
Use Random Read Policy

When reading binary ORC and Parquet datasets, you should configure Spark to use the
S3A's random IO read policy, as described in Optimizing HTTP GET Requests for S3. With

Hortonworks Data Platform December 15, 2017

64

fs.s3a.experimental.input.fadvise set to random, rather than ask for a the
entire file in one HTTPS request (the "normal" operation), the S3A connector only asks
for part of a file at a time. If it needs to seek backwards, the remaining data in this part is
discarded, and then a new request is made on the same HTTPS connection. This reduces the
time wasted on closing and opening up new HTTPS connections.

This setting dramatically speeds up random access, but actually reduces performance on
queries performing sequential reads through an entire file — so do not use random setting
for such jobs.

Minimize Read and Write Operations for ORC

For optimal performance when reading files saved in the ORC format, read and write
operations must be minimized. To achieve this, set the following options:

spark.sql.orc.filterPushdown true
spark.sql.hive.metastorePartitionPruning true

The spark.sql.orc.filterPushdown option enables the ORC library to skip
unneeded columns and to use index information to filter out parts of the file where it can
be determined that no columns match the predicate.

With the spark.sql.hive.metastorePartitionPruning option enabled,
predicates are pushed down into the Hive metastore to eliminate unmatched partitions.

Minimize Read and Write Operations for Parquet

For optimal performance when reading files saved in the Parquet format, read and write
operations must be minimized, including generation of summary metadata, and coalescing
metadata from multiple files. The predicate pushdown option enables the Parquet library
to skip unneeded columns, saving bandwidth. To achieve this, set the following options:

spark.hadoop.parquet.enable.summary-metadata false
spark.sql.parquet.mergeSchema false
spark.sql.parquet.filterPushdown true
spark.sql.hive.metastorePartitionPruning true

7.2.2. Accelerating Sequential Reads Through Files in S3

Note

This optimization is meant specifically for Amazon S3.

The most effective way to scan a large file is in a single HTTPS request - which is the
default behavior. If the scanning code skips parts of the file using seek(), then you
can potentially improve the performance of these forward seeks by tuning the option
spark.hadoop.fs.s3a.readahead.range. For example:

spark.hadoop.fs.s3a.readahead.range 512M

This option declares the number of bytes to read when seeking forwards in a file before
closing and re-opening the HTTPS connection to S3. That close/reopen operation can be so
slow that simply reading and discarding the data is actually faster. This is particularly true
when working with remote S3 buckets of "long-haul" connections.

Hortonworks Data Platform December 15, 2017

65

8. Copying Cloud Data with Hadoop
To copy and manage datasets stored in S3, ADLS or WASB between the cloud storage and
HDFS, you can use DistCp and FS Shell commands.

8.1. Copying Data with DistCp
You can use DistCp to copy data between your cluster’s HDFS and your cloud storage.
DistCp is a utility for copying large data sets between distributed filesystems. To access
DistCp utility, SSH to any node in your cluster.

Copying Data from HDFS to Cloud Storage

To transfer data from HDFS to an Amazon S3 bucket, list the path to HDFS first and the
path to the cloud storage second:

hadoop distcp hdfs://source-folder s3a://destination-bucket

Updating Existing Data

If you would like to transfer only the files that don’t already exist in the target folder, add
the update option to improve the copy speeds:

hadoop distcp -update hdfs://source-folder s3a://destination-bucket

When copying between Amazon S3 and HDFS, the "update" check only compares file size; it
does not use checksums to detect other changes in the data.

Copying Data from Cloud Storage to HDFS

To copy data from your cloud storage container to HDFS, list the path of the cloud storage
data first and the path to HDFS second. For example:

hadoop distcp s3a://hwdev-examples-ireland/datasets /tmp/datasets2

This downloads all files.

You can add the update option to only download data which has changed:

hadoop distcp -update s3a://hwdev-examples-ireland/datasets /tmp/datasets2

Copying Data Between Cloud Storage Containers

You can copy data between cloud storage containers simply by listing the different URLs as
the source and destination paths. This includes copying:

• Between two Amazon S3 buckets

• Between two ADLS containers

• Between two WASB containers

• Between ADLS and WASB containers

For example, to copy data from one Amazon S3 bucket to another, use the following
syntax:

Hortonworks Data Platform December 15, 2017

66

hadoop distcp s3a://hwdev-example-ireland/datasets s3a://hwdev-example-us/
datasets

Irrespective of source and destination bucket locations, when copying data between
Amazon S3 buckets, all data passes through the Hadoop cluster: once to read, once to
write. This means that the time to perform the copy depends on the size of the Hadoop
cluster, and the bandwidth between it and the S3 buckets. Furthermore, even when
running within Amazon's own infrastructure, you are billed for your accesses to remote
Amazon S3 buckets.

Copying Data Within a Cloud Storage Container

Copy operations within a single object store still take place in the Hadoop cluster, even
when the object store implements a more efficient copy operation internally. That is, an
operation such as

hadoop distcp s3a://bucket/datasets/set1 s3a://bucket/datasets/set2

copies each byte down to the Hadoop worker nodes and back to the bucket. In addition to
the operation being slow, it means that charges may be incurred.

Specifying Per-Bucket DistCp Options for S3

If a bucket has different authentication or endpoint options, then the different options
for that bucket can be set with a bucket-specific option. For example, to copy to a remote
bucket using Amazon's V4 authentication API requires the explicit S3 endpoint to be
declared:

hadoop distcp s3a://hwdev-example-us/datasets/set1 s3a://hwdev-example-
frankfurt/datasets/ \
 -D fs.s3a.bucket.hwdev-example-frankfurt.endpoint=s3.eu-central-1.amazonaws.
com

Similarly, different credentials may be used when copying between buckets of different
accounts. When performing such an operation, consider that secrets on the command line
can be visible to other users on the system, so potentially insecure.

hadoop distcp s3a://hwdev-example-us/datasets/set1 s3a://hwdev-example-
frankfurt/datasets/ \
 -D fs.s3a.bucket.hwdev-example-frankfurt.endpoint=s3.eu-central-1.amazonaws.
com \
 -D fs.s3a.fs.s3a.bucket.hwdev-example-frankfurt.access.key=AKAACCESSKEY-2 \
 -D fs.s3a.bucket.nightly.secret.key=SECRETKEY

Using short-lived session keys can reduce the vulnerabilities here, while storing the secrets in
hadoop jceks credential files is potentially significantly more secure.

Related Links

Improving Performance for DistCp [67]

Local Space Requirements for Copying to S3 [67]

Limitations When Using DistCp with S3 [67]

Apache DistCp documentation

https://hadoop.apache.org/docs/r2.7.2/hadoop-distcp/DistCp.html

Hortonworks Data Platform December 15, 2017

67

8.1.1. Improving Performance for DistCp

ADLS and WASB

You can tune fs.azure.selfthrottling.read.factor and
fs.azure.selfthrottling.write.factor. Refer to Maximizing HDInsight
throughput to Azure Blob Storage blog post.

Amazon S3

If you are planning to copy large amounts of data between HDFS and S3, you can
accelerate the process by passing -D fs.s3a.fast.upload=true while invoking
DistCp. For example:

hadoop distcp -D fs.s3a.fast.upload=true s3a://dominika-test/driver-data /
tmp/test2

The fs.s3a.fast.upload option significantly accelerates data upload by writing the
data in blocks, possibly in parallel.

For more tips on how to improve performance for DistCp with S3, refer to Configuring and
Tuning S3A Fast Upload.

8.1.2. Local Space Requirements for Copying to S3

When copying files to S3 using the S3A connector, DistCp copies each file to the local
temp directory before the final upload, so you need as much space on your disk as
your largest file. The location of this intermediate directory is set in the property
fs.s3a.buffer.dir; if needed, you can change that to a location where you have more
space.

When working with S3, you reduce the amount of disk space needed by switching to
the S3A fast upload mechanism, which only needs enough disk space to store blocks
of data which have not yet been uploaded, or even do it in memory. You can limit the
requirements even further by reducing the thread pool size.

8.1.3. Limitations When Using DistCp with S3

When using DistCp with data in S3, consider the following limitations:

• The -append option is not supported.

• The -diff option is not supported.

• The -atomic option causes a rename of the temporary data, so significantly increases
the time to commit work at the end of the operation. Furthermore, as S3A does not
offer atomic renames of directories, the -atomic operation doesn't actually
deliver what is promised. Avoid using this option.

• All -p options, including those to preserve permissions, user and group information,
attributes checksums, and replication are ignored.

• CRC checking will not be performed, irrespective of the value of the -skipCrc flag.

https://blogs.msdn.microsoft.com/brian_swan/2013/11/25/maximizing-hdinsight-throughput-to-azure-blob-storage/
https://blogs.msdn.microsoft.com/brian_swan/2013/11/25/maximizing-hdinsight-throughput-to-azure-blob-storage/

Hortonworks Data Platform December 15, 2017

68

8.2. Running FS Shell Commands
Many of the standard Hadoop FileSystem shell commands that interact with HDFS also
can be used to interact with S3, ADLS, and WASB. They can be useful for a few specific
purposes including confirming that the authentication with your cloud service works,
debugging, browsing files and creating directories (as an alternative to the cloud service-
specific tools), and other management operations.

When running the commands, provide a fully qualified URL. The commands use the
following syntax

hadoop fs -<operation> URL

where <operation> indicates a particular action to be performed against a directory or a
file.

For example, the following command lists all files in a directory called "dir1", which resides
in an Amazon S3 bucket called "bucket1":

hadoop fs -ls s3a://bucket1/dir1

Examples

Create directories and create or copy files into them:

Create a directory
hadoop fs -mkdir s3a://bucket1/datasets/

Upload a file from the cluster filesystem
hadoop fs -put /datasets/example.orc s3a://bucket1/datasets/

Touch a file
hadoop fs -touchz s3a://bucket1/datasetstouched

Download and view objects:

Copy a directory to the local filesystem
hadoop fs -copyToLocal s3a://bucket1/datasets/

Copy a file from the object store to the local filesystem
hadoop fs -get s3a://bucket1/hello.txt /examples

Print the object
hadoop fs -cat s3a://bucket1/hello.txt

Print the object, unzipping it if necessary
hadoop fs -text s3a://bucket1/hello.txt

Download log files into a local file
hadoop fs -getmerge s3a://s3a://bucket1/logs* log.txt

Related Links

Commands That May Be Slower with S3 [69]

Operations Unsupported for S3 [70]

Deleting Objects on S3 [70]

Hortonworks Data Platform December 15, 2017

69

Overwriting Objects on S3 [71]

Timestamps on S3 [71]

Security Model and Operations on S3 [71]

8.2.1. Commands That May Be Slower with S3

Some commands tend to be significantly slower with Amazon S3 than when invoked
against HDFS or other filesystems. This includes renaming files, listing files, find, mv, cp,
and rm.

Renaming Files

Unlike in a normal filesystem, renaming files and directories in an object store usually takes
time proportional to the size of the objects being manipulated. As many of the filesystem
shell operations use renaming as the final stage in operations, skipping that stage can avoid
long delays.

In particular, we recommend that when using the put and copyFromLocal commands,
you set the -doption for a direct upload. For example:

Upload a file from the cluster filesystem
hadoop fs -put -d /datasets/example.orc s3a://bucket1/datasets/

Upload a file from the local filesystem
hadoop fs -copyFromLocal -d -f ~/datasets/devices.orc s3a://bucket1/datasets/

Create a file from stdin
echo "hello" | hadoop fs -put -d -f - s3a://bucket1/datasets/hello.txt

Listing Files

Commands which list many files tend to be significantly slower with Amazon S3 than when
invoked against HDFS or other filesystems. For example:

hadoop fs -count s3a://bucket1/
hadoop fs -du s3a://bucket1/

Find

The find command can be very slow on a large store with many directories under the path
supplied.

Enumerate all files in the bucket
hadoop fs -find s3a://bucket1/ -print

List *.txt in the bucket.
Remember to escape the wildcard to stop the bash shell trying to expand it
hadoop fs -find s3a://bucket1/datasets/ -name *.txt -print

Rename

The time to rename a file depends on its size. The time to rename a directory depends on
the number and size of all files beneath that directory. If the operation is interrupted, the
object store will be in an undefined state.

Hortonworks Data Platform December 15, 2017

70

hadoop fs -mv s3a://bucket1/datasets s3a://bucket/historical

Copy

The copy operation reads each file and then writes it back to the object store; the time
to complete depends on the amount of data to copy, and on the bandwidth in both
directions between the local computer and the object store.

hadoop fs -cp s3a://bucket1/datasets s3a://bucket1/historical

Note

The further the VMs are from the object store, the longer the copy process
takes.

8.2.2. Operations Unsupported for S3

S3A does not implement the same feature set as HDFS. The following FileSystem shell
subcommands are not supported with an S3A URI:

• -appendToFile

• -checksum

• -chgrp

• -chmod

• -chown

• -createSnapshot

• -deleteSnapshot

• -df

• -getfacl

• -getfattr

• -renameSnapshot

• -setfacl

• -setfattr

• -setrep

• -truncate

8.2.3. Deleting Objects on S3

The rm command deletes objects and directories full of objects. If the object store is
eventually consistent, fs ls commands and other accessors may briefly return the details
of the now-deleted objects; this is an artifact of object stores which cannot be avoided.

Hortonworks Data Platform December 15, 2017

71

If the filesystem client is configured to copy files to a trash directory, the trash directory
is in the bucket. The rm operation then takes time proportional to the size of the data.
Furthermore, the deleted files continue to incur storage costs.

To make sure that your deleted files are no longer incurring costs, you can do two things:

• Use the the -skipTrash option when removing files:hadoop fs -rm -skipTrash
s3a://bucket1/dataset

• Use the expunge command to purge any data that has been previously moved to the
.Trash directory:hadoop fs -expunge -D fs.defaultFS=s3a://bucket1/

As the expunge command only works with the default filesystem, you need to use the
-D option to make the target object store the default filesystem. This will change the
default configuration.

8.2.4. Overwriting Objects on S3

Amazon S3 is eventually consistent, which means that an operation which overwrites
existing objects may not be immediately visible to all clients and queries. As a result, later
operations which query the same object's status or contents may get the previous object;
this can sometimes surface within the same client, while reading a single object.

Avoid having a sequence of commands which overwrite objects and then immediately
working on the updated data; there is a risk that the previous data will be used instead.

8.2.5. Timestamps on S3

Timestamps of objects and directories in Amazon S3 do not follow the behavior of files and
directories in HDFS:

• The creation time of an object is the time when the object was created in the object
store. This is at the end of the write process, not in the beginning.

• If an object is overwritten, the modification time is updated.

• Directories may or may not have valid timestamps.

• The atime access time feature is not supported by any of the object stores found in the
Apache Hadoop codebase.

8.2.6. Security Model and Operations on S3

The security and permissions model of Amazon S3 is very different from this of a UNIX-
style filesystem: on Amazon S3, operations which query or manipulate permissions are
generally unsupported. Operations to which this applies include: chgrp, chmod, chown,
getfacl, and setfacl. The related attribute commands getfattr andsetfattr are
also unavailable. In addition, operations which try to preserve permissions (for example fs
-put -p) do not preserve permissions.

Although these operations are unsupported, filesystem commands which list permission
and user/group details usually simulate these details. As a consequence, when interacting

Hortonworks Data Platform December 15, 2017

72

with read-only object stores, the permissions found in "list" and "stat" commands may
indicate that the user has write access — when in fact he does't.

Amazon S3 has a permissions model of its own. This model can be manipulated through
store-specific tooling. Be aware that some of the permissions which can be set — such as
write-only paths, or various permissions on the root path — may be incompatible with the
S3A client. It expects full read and write access to the entire bucket with trying to write
data, and may fail if it does not have these permissions.

As an example of how permissions are simulated, here is a listing of Amazon's public, read-
only bucket of Landsat images:

$ hadoop fs -ls s3a://landsat-pds/
Found 10 items
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/L8
-rw-rw-rw- 1 mapred 23764 2015-01-28 18:13 s3a://landsat-pds/index.html
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/landsat-
pds_stats
-rw-rw-rw- 1 mapred 105 2016-08-19 18:12 s3a://landsat-pds/robots.txt
-rw-rw-rw- 1 mapred 38 2016-09-26 12:16 s3a://landsat-pds/run_info.
json
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/runs
-rw-rw-rw- 1 mapred 27458808 2016-09-26 12:16 s3a://landsat-pds/
scene_list.gz
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/tarq
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/
tarq_corrupt
drwxrwxrwx - mapred 0 2016-09-26 12:16 s3a://landsat-pds/test

As you can see:

• All files are listed as having full read/write permissions.

• All directories appear to have full rwx permissions.

• The replication count of all files is "1".

• The owner of all files and directories is declared to be the current user (mapred).

• The timestamp of all directories is actually that of the time the -ls operation was
executed. This is because these directories are not actual objects in the store; they are
simulated directories based on the existence of objects under their paths.

When an attempt is made to delete one of the files, the operation fails — despite the
permissions shown by the ls command:

$ hadoop fs -rm s3a://landsat-pds/scene_list.gz
rm: s3a://landsat-pds/scene_list.gz: delete on s3a://landsat-pds/scene_list.
gz:
 com.amazonaws.services.s3.model.AmazonS3Exception: Access Denied (Service:
 Amazon S3;
 Status Code: 403; Error Code: AccessDenied; Request ID: 1EF98D5957BCAB3D),
 S3 Extended Request ID: wi3veOXFuFqWBUCJgV3Z+NQVj9gWgZVdXlPU4KBbYMsw/gA
+hyhRXcaQ+PogOsDgHh31HlTCebQ=

This demonstrates that the listed permissions cannot be taken as evidence of write access;
only object manipulation can determine this.

	Hortonworks Data Platform
	Table of Contents
	1. About This Guide
	2. Introducing the Cloud Storage Connectors
	3. Getting Started with Amazon S3
	3.1. About Amazon S3
	3.1.1. Limitations of Amazon S3

	3.2. Configuring Authentication with S3
	3.2.1. Using Instance Metadata to Authenticate
	3.2.2. Using Configuration Properties to Authenticate
	3.2.2.1. Using Per-Bucket Credentials to Authenticate

	3.2.3. Using Environment Variables to Authenticate
	3.2.4. Embedding Credentials in the URL to Authenticate
	3.2.5. Defining Authentication Providers
	3.2.5.1. Using Temporary Session Credentials
	3.2.5.2. Using Anonymous Login
	3.2.5.3. Protecting S3 Credentials with Credential Providers
	3.2.5.3.1. Creating a Credential File
	3.2.5.3.2. Configuring the Hadoop Security Credential Provider Path Property
	3.2.5.3.3. Customizing Per-Bucket Secrets Held in Credential Files

	3.3. Referencing S3 in the URLs
	3.4. Configuring Per-Bucket Settings
	3.4.1. Configuring Per-Bucket Settings to Access Data Around the World

	3.5. A List of S3A Configuration Properties
	3.6. Encrypting Data on S3
	3.6.1. SSE-S3: Amazon S3-Managed Encryption Keys
	3.6.1.1. Enabling SSE-S3

	3.6.2. SSE-KMS: Amazon S3-KMS Managed Encryption Keys
	3.6.2.1. Enabling SSE-KMS

	3.6.3. SSE-C: Server-Side Encryption with Customer-Provided Encryption Keys
	3.6.3.1. Enabling SSE-C

	3.6.4. Configuring Encryption for Specific Buckets
	3.6.5. Mandating Encryption for an S3 Bucket
	3.6.6. Performance Impact of Encryption

	3.7. Improving Performance for S3
	3.7.1. Improving DistCp Performance with S3
	3.7.1.1. Working with Local S3 Buckets
	3.7.1.2. Accelerating File Listing
	3.7.1.3. Configuring and Tuning S3A Fast Upload
	3.7.1.3.1. Enabling S3A Fast Upload
	3.7.1.3.2. Configuring S3A Fast Upload Options
	3.7.1.3.3. Thread Tuning for S3A Fast Upload

	3.7.1.4. Controlling the Number of Mappers and Their Bandwidth

	3.7.2. Improving Container Allocation Performance for S3
	3.7.3. Optimizing HTTP Get Requests for S3
	3.7.4. Improving Load-Balancing Behavior for S3

	3.8. Troubleshooting S3
	3.8.1. Authentication Failures
	3.8.1.1. Authentication Failure Due to Signature Mismatch
	3.8.1.2. Authentication Failure Due to Clock Skew
	3.8.1.3. Authentication Failure When Using URLs with Embedded Secrets
	3.8.1.4. Authentication Failures When Running on Java 8u60+

	3.8.2. Classpath Related Errors
	3.8.2.1. ClassNotFoundException Errors
	3.8.2.2. Missing Method in com.amazonaws Class
	3.8.2.3. Missing Method in a Jackson Class

	3.8.3. Connectivity Problems
	3.8.3.1. Unable to Execute HTTP Request: Read Timed Out
	3.8.3.2. Bad Request Exception When Working with S3 Frankfurt, Seoul, or Elsewhere
	3.8.3.3. Error Message "The bucket you are attempting to access must be addressed using the specified endpoint"

	3.8.4. Errors During Delete or Rename of Files
	3.8.5. Errors Related to Visible S3A Inconsistency
	3.8.6. Troubleshooting S3-SSE
	3.8.6.1. AccessDeniedException When Creating Directories and Files
	3.8.6.2. AES256 Is Enabled but an Encryption Key Was Set in fs.s3a.server-side-encryption.key
	3.8.6.3. Unknown Server Side Encryption Algorithm

	4. Getting Started with ADLS
	4.1. Configuring Authentication with ADLS
	4.1.1. Using Client Credential
	4.1.2. Using Token-Based Authentication
	4.1.3. Protecting the Azure Credentials for ADLS with Credential Providers

	4.2. Referencing ADLS in the URLs
	4.3. Configuring User and Group Representation

	5. Getting Started with WASB
	5.1. Configuring Authentication with WASB
	5.1.1. Protecting the Azure Credentials for WASB with Credential Providers
	5.1.1.1. Protecting the Azure Credentials for WASB within an Encrypted File

	5.2. Referencing WASB in the URLs
	5.3. Configuring Page Blob Support
	5.4. Configuring Atomic Folder Rename
	5.5. Configuring Support for Append API
	5.6. Configuring Multithread Support
	5.7. Configuring WASB Secure Mode
	5.8. Configuring Authorization Support in WASB

	6. Accessing Cloud Data in Hive
	6.1. Exposing Cloud Data as Hive Tables
	6.2. Populating Partition-Related Information
	6.3. Analyzing Tables
	6.4. Improving Hive Performance with S3/ADLS/WASB

	7. Accessing Cloud Data in Spark
	7.1. Committing Output to S3
	7.2. Improving Spark Performance with S3/ADLS/WASB
	7.2.1. Accelerating ORC and Parquet Reads
	7.2.2. Accelerating Sequential Reads Through Files in S3

	8. Copying Cloud Data with Hadoop
	8.1. Copying Data with DistCp
	8.1.1. Improving Performance for DistCp
	8.1.2. Local Space Requirements for Copying to S3
	8.1.3. Limitations When Using DistCp with S3

	8.2. Running FS Shell Commands
	8.2.1. Commands That May Be Slower with S3
	8.2.2. Operations Unsupported for S3
	8.2.3. Deleting Objects on S3
	8.2.4. Overwriting Objects on S3
	8.2.5. Timestamps on S3
	8.2.6. Security Model and Operations on S3

