
Apache Phoenix Guide

Important Notice
© 2010-2020 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 5.16.x
Date: April 9, 2020

Table of Contents

Release Notes..4

Prerequisites..5

Installing Apache Phoenix using Cloudera Manager..6
Downloading and Installing the Phoenix Parcel...6

Configuring HBase for use with Phoenix..6
Validating the Phoenix Installation..7

Using Phoenix to Store and Access Data...8
Orchestrating SQL and APIs with Apache Phoenix...8

Creating and Using User-Defined Functions (UDFs) in Phoenix...8

Mapping Phoenix Schemas to HBase Namespaces..8

Associating Tables of a Schema to a Namespace...9

Using Phoenix Client to Load Data...10

Using the Index in Phoenix...11

Understanding Apache Phoenix-Spark Connector...12
Configure Phoenix-Spark Connector using Cloudera Manager..12

Phoenix Spark Connector Usage Examples ...13

Performance Tuning...16

Frequently Asked Questions...20

Uninstalling Phoenix Parcel..22

Appendix: Apache License, Version 2.0...23

Release Notes

Apache Phoenix 4.14.1 is available with CDH 5.16.2.

Starting with CDH 5.16.2, Apache Phoenix 4.14.1 parcel can be installed and used with CDH. You can now download
and install the Phoenix parcel on CDH 5.16.2.

Known Issues

Potential deadlock on region opening with secondary index recovery

Distributed deadlock happens in clusters with a moderate number of regions for the data tables, secondary index
tables.

Products affected: Phoenix

Releases affected:Phoenix 4.14.1 parcel

User affected: Users of Phoenix with secondary indexes

Severity (Low/Medium/High):Medium

Impact: Deadlock on region opening

Immediate action required/workaround:

Make the following configuration changes in HBase:

1) Set hbase.master.startup.retainassign to false

2) Increase the value of hbase.regionserver.executor.openregion.threads and restart cluster should bring
up cluster.

If you continue to encounter issues, tune the following assignment manager parameters to match the count of regions
for faster assignments:

• hbase.assignment.threads.max

• hbase.master.namespace.init.timeout

• hbase.master.wait.on.regionservers.mintostart

• hbase.bulk.assignment.threshold.regions

• hbase.bulk.assignment.threshold.servers

Unsupported Features

The following upstream Apache Phoenix 4.14.1 features are currently not supported in the Cloudera parcel of Phoenix:

• Hive, Pig, Flume, Kafka and MapReduce integration
• Phoenix Query Server
• Cross-row and cross-table transaction support

4 | Apache Phoenix Guide

Release Notes

Prerequisites

• Phoenix requires HBase services running in your CDH cluster where you want to install Phoenix..
• The current release of Cloudera’s parcel of Apache Phoenix 4.14.1 is supported on CDH 5.16.2.

For more information about the hardware and software requirements, see the Cloudera Enterprise 5.x Release Notes.

Apache Phoenix Guide | 5

Prerequisites

Installing Apache Phoenix using Cloudera Manager

You can install Apache Phoenix using Cloudera Manager 5.16.2. To install Apache Phoenix:

• Download and install the Phoenix parcel
• Configure HBase for use with Phoenix
• Validate the Phoenix installation

Downloading and Installing the Phoenix Parcel
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. In the Parcels page, click Configuration.
2. In the Remote Parcel Repository URLs section, add a new entry and type the correct Phoenix parcel repository

URL in the format:
https://username:password@archive.cloudera.com/phoenix/parcel_version/parcels/. For
example, https://username:password@archive.cloudera.com/phoenix/5.16.2/parcels/

Note:

• The username and password in the URL are your Phoenix repository authentication
credentials. You must have an Enterprise Support Subscription account to download and
install this product.

• If your authentication credentials for the main parcel repository and the Phoenix parcel
repository are the same. You can use HTTP authentication username override for Cloudera
Repositories andHTTP authentication password override for Cloudera Repositories to enter
your user name and password, respectively.

3. Click Save Changes.

The Phoenix parcel will now be available to download.

4. In the Location selector, click the cluster name in which you want to install Phoenix.

The Phoenix parcel is listed as Available Remotely in the Status column.

5. Click Download to download the Phoenix parcel to your local repository. The status changes to Downloading.
6. Click Distribute. The status changes to Distributing. During distribution, you can:

• Click the Details link in the Status column to view the Parcel Distribution Status page.
• Click Cancel to cancel the distribution.When the Distribute action completes, the button changes to Activate,

and you can click the Distributed status link to view the status page.

7. Click Activate to activate the parcel.

You will see Distributed, Activated in the Status column.

Configuring HBase for use with Phoenix
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Before you start using Phoenix, you must configure the following HBase properties using Cloudera Manager:

1. Go to the HBase service.
2. Click the Configuration tab.

6 | Apache Phoenix Guide

Installing Apache Phoenix using Cloudera Manager

https://username:password@archive.cloudera.com/phoenix/5.16.2/parcels/

3. Select Scope > HBase Cluster (Service-Wide).
4. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search

for it by typing its name in the Search box.
5. Click View as XML, and add the following properties:

• Set hbase.regionserver.wal.codec to enable customWrite Ahead Log ("WAL") edits to be written as
follows:

<property>
<name>hbase.regionserver.wal.codec</name>
<value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value>
</property>

• Set the following property to enable user-defined functions:

<property>
 <name>phoenix.functions.allowUserDefinedFunctions</name>
 <value>true</value>
 <description>enable UDF functions</description>
</property>

6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart the role and service when Cloudera Manager prompts you to restart.

Validating the Phoenix Installation

Validating a Native Phoenix Installation on an Unsecured Cluster

To validate your installation, log in as the hbase user, and run the following smoke tests from the command prompt:
:

phoenix-psql /opt/cloudera/parcels/phoenix parcel/lib/phoenix/examples/WEB_STAT.sql
/opt/cloudera/parcels/<phoenix parcel>/lib/phoenix/examples/WEB_STAT.csv
/opt/cloudera/parcels/<phoenix parcel>/lib/phoenix/examples/WEB_STAT_QUERIES.sql

Validating a Native Phoenix Installation on a Cluster Secured with Kerberos

To validate your installation, log in as the hbase user, and perform the following actions:

1. Obtain a valid Kerberos ticket by running kinit. For example:

kinit var/run/cloudera-scm-agent/process/<latest-process-id>-HBASE/hbase.keytab
hbase/<local.node.host.name>

Note: You can find the process directory using the following command: ls -lrt
var/run/cloudera-scm-agent/process/ | awk '{print $9}' |grep -i hbase |

tail -1 360-ks_indexer-HBASE_INDEXER

2. Run the following smoke tests from your command line in your cluster:

phoenix-psql

You will see the help displayed for the phoenix-psql script. You can test Phoenix using one of the examples that
you can find here: /opt/cloudera/parcels/Phoenix parcel/lib/phoenix/examples

For example,

phoenix-psql
/opt/cloudera/parcels/PHOENIX-4.14.1-cdh5.16.2/lib/phoenix/examples/WEB_STAT.sql

Apache Phoenix Guide | 7

Installing Apache Phoenix using Cloudera Manager

Using Phoenix to Store and Access Data

Phoenix lets you create and interact with tables in the form of typical DDL/DML statements through its standard JDBC
API. With the driver APIs, Phoenix translates SQL to native HBase API calls.

Orchestrating SQL and APIs with Apache Phoenix
You can use the standard JDBC APIs instead of the regular HBase client APIs to create tables, insert data, and query
your HBase data.

Obtaining a driver for application development

Based on your application development requirements, you can obtain one of the following drivers:

JDBC driver

Use the /opt/cloudera/parcels/phoenix parcel/lib/phoenix/phoenix parcel-client.jar file in the Phoenix
server-client repository. If you use the repository, download the JAR file corresponding to your installed CDH version.

JDBC driver as a Maven dependency

You can pull the CDH 5 artifacts from the Cloudera Maven repository from here:
https://archive.cloudera.com/phoenix/5.16.2/maven-repository/. You can access the Maven repository using your
Enterprise Support Subscription credentials.

Creating and Using User-Defined Functions (UDFs) in Phoenix
With a user-defined function (UDF), you can extend the functionality of your SQL statements by creating scalar functions
that operate on a specific tenant. For details about creating, dropping, and how to useUDFs for Phoenix, seeUser-defined
functions on the Apache website.

For more information, see https://phoenix.apache.org/udf.html.

Mapping Phoenix Schemas to HBase Namespaces
You can map a Phoenix schema to an HBase namespace to gain multitenancy features in Phoenix.

HBase, the underlying storage engine for Phoenix, has namespaces to support multi-tenancy features. Multitenancy
helps anHBase user or administrator to performaccess control and quotamanagement tasks. Also, namespaces enable
tighter control of where a particular data set is stored on RegionsServers.

Enabling Namespace Mapping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can enable namespace mapping by configuring a set of properties using Cloudera Manager.

If namespace mapping is enabled, then the tables created with the schema will be mapped to the namespace. The old
clients will not work after this property is enabled. Test or carefully plan the Phoenix to HBase namespace mappings
before implementing them.

Important: Cloudera recommends that you enable namespace mapping. If you decide not to enable
this feature, you can skip the following steps.

To enable Phoenix schema mapping to a non-default HBase namespace:

8 | Apache Phoenix Guide

Using Phoenix to Store and Access Data

https://archive.cloudera.com/phoenix/5.16.2/maven-repository/
https://phoenix.apache.org/udf.html

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > (Service-Wide).
4. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search

for it by typing its name in the Search box.
5. Add the following property values:

Name: phoenix.schema.isNamespaceMappingEnabled

Description: Enablesmapping of tables of a Phoenix schema to a non-default HBase namespace. To enablemapping
of a schema to a non-default namespace, set the value of this property to true. The default setting for this property
is false.

Value: true

Name: phoenix.schema.mapSystemTablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, all system
tables, if any, are migrated to a namespace called system.With false setting: System tables are associated with
the default namespace.

Value: true.

6. Select Scope > Gateway.
7. Locate the HBase Client Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search

for it by typing its name in the Search box.
8. Add the following property values:

Name: phoenix.schema.isNamespaceMappingEnabled

Description: Enablesmapping of tables of a Phoenix schema to a non-default HBase namespace. To enablemapping
of the schema to a non-default namespace, set the value of this property to true. The default setting for this
property is false.

Value: true

Name: phoenix.schema.mapSystemTablesToNamespace

Description: With true setting (default): After namespace mapping is enabled with the other property, all system
tables, if any, are migrated to a namespace called system.With false setting: System tables are associated with
the default namespace.

Value: true.

9. Enter a Reason for change, and then click Save Changes to commit the changes.
10. Restart the role.
11. Restart the service.

Note: If you do not want to map Phoenix system tables to namespaces because of compatibility
issues with your current applications, set the
phoenix.schema.mapSystemTablesToNamespaceproperty to false.

Associating Tables of a Schema to a Namespace
After you enable namespace mapping on a Phoenix schema that already has tables, you can migrate the tables to an
HBase namespace. The namespace directory that contains the migrated tables inherits the schema name.

For example, if the schema name is store1, then the full path to the namespace is $hbase.rootdir/data/store1.
System tables are migrated to the namespace automatically during the first connection after enabling namespace
properties.

Apache Phoenix Guide | 9

Using Phoenix to Store and Access Data

Associating table in a non-customized environment without Kerberos

You can run an appropriate command to associate a table in a non-customized environment without Kerberos.

Run the following command to associate a table:

phoenix-psql
ZooKeeper_hostname
-m
Schema_name.table_name

Associating table in a customized Kerberos environment

Prerequisite: In a Kerberos-secured environment, youmust have admin privileges (userhbase) to complete the following
task.

1. Run a command to migrate a table of a schema to a namespace, using the following command syntax for the
options that apply to your environment:

phoenix-psql
ZooKeeper_hostnames:2181
:zookeeper.znode.parent
:HBase_headless_keytab_location
:principal_name
;TenantId=tenant_Id
;CurrentSCN=current_SCN
-m
schema_name.table_name

Additional information for valid command parameters:

• ZooKeeper_hostnames

Enter the ZooKeeper hostname or hostnames that compose the ZooKeeper quorum. If you enter multiple
hostnames, enter them as comma-separated values. This parameter is required. You must append the colon
and ZooKeeper port number if you invoke the other security parameters in the command. The default port
number is 2181.

• zookeeper.znode.parent

This setting is defined in the hbase-site.xml file.

• -m schema_name.table_name

The -m argument is required. There is a space before and after the -m option.

Using Phoenix Client to Load Data
You must use the Phoenix client to load data into the HBase database and also to write to the Phoenix tables.

Index updates are automatically generated by the Phoenix client and there is no user intervention or effort required.
Whenever a record is written to the Phoenix tables, the client generates the updates for the indexes automatically.

Note: If the Phoenix table has indexes, you can use the JDBC driver or CSV bulk load table to update
or ingest data.

It is highly recommended that you use the Phoenix client to load data into the HBase database and also to write to the
Phoenix tables. If you use the HBase APIs to write data to a Phoenix data table, the indexes for that Phoenix data table
will not be updated.

10 | Apache Phoenix Guide

Using Phoenix to Store and Access Data

Using the Index in Phoenix
Apache Phoenix automatically uses indexes to service a query. Phoenix supports global and local indexes. Each is useful
in specific scenarios and has its own performance characteristics.

Global indexes in Phoenix

You can use global indexes for READ-heavy use cases. Each global index is stored in its own table and thus is not
co-located with the data table. With global indexes, you can disperse the READ load between the main and secondary
index table on different RegionServers serving different sets of access patterns. A Global index is a covered index. It is
used for queries only when all columns in that query are included in that index.

Local indexes in Phoenix

You can use local indexes for WRITE-heavy use cases. Each local index is stored within the data table. With global
indexes, you can use local indexes even when all columns referenced in a query are not contained in the index.

This is done by default for local indexes because the table and index data reside on the same region server and hence
it ensures that the lookup is local.

Apache Phoenix Guide | 11

Using Phoenix to Store and Access Data

Understanding Apache Phoenix-Spark Connector

You can use Apache Phoenix-spark plugin on your secured clusters to perform READ and WRITE operations.

Connect to a secure cluster

You can connect to a secured cluster using the Phoenix JDBC connector. Enter the following syntax in the shell:

jdbc:phoenix:<ZK hostnames>:<ZK port>:<root znode>:<principal name>:<keytab file location>
jdbc:phoenix:h1.cdh.local,h2.cdh.local,h3.cdh.local:2181:/hbase-secure:user1@cdh.LOCAL:/Users/user1/keytabs/myuser.headless.keytab

You need Principal and keytab parameters only if you have not done the kinit before starting the job and want Phoenix
to log you in automatically.

Considerations for setting up Spark

• Before you can use Phoenix-Spark connector for your Spark 1.6 programs, youmust configure yourmaven settings
to have a repository that points to the password protected repository at
https://archive.cloudera.com/phoenix/5.16.2/maven-repository/ and use the dependency:

<dependency>
 <groupId>org.apache.phoenix</groupId>
 <artifactId>phoenix-spark</artifactId>
 <version>4.14.1-cdh5.16.2</version>
 <scope>provided</scope>
</dependency>

Note: You can access theMaven repository using your Enterprise Support Subscription credentials.
The Phoenix-Spark connector works with Spark 1.6, but it does not support Spark 2 that can be
installed on top of CDH 5.16.

Configure Phoenix-Spark Connector using Cloudera Manager
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Spark service.
2. Click the Configuration tab.
3. Select Scope > Gateway.
4. Select Category > Advanced.
5. Locate the Spark Client Advanced Configuration Snippet (Safety Valve) for

spark-conf/spark-defaults.conf property or search for it by typing its name in the Search box.
6. Add the following properties to ensure that all required Phoenix and HBase platform dependencies are available

on the classpath for the Spark executors and drivers:

Phoenix client JARs:

spark.executor.extraClassPath=phoenix-<version>-client.jar
spark.driver.extraClassPath=phoenix-<version>-client.jar

Phoenix-Spark JARs:

spark.executor.extraClassPath=phoenix-spark-<version>.jar
spark.driver.extraClassPath=phoenix-spark-<version>.jar

7. Enter a Reason for change, and then click Save Changes to commit the changes.

12 | Apache Phoenix Guide

Understanding Apache Phoenix-Spark Connector

https://archive.cloudera.com/phoenix/5.16.2/maven-repository/

8. Restart the role and service when Cloudera Manager prompts you to restart.

Note: You can enable your IDE by adding the following provided dependency to your build:

<dependency>
 <groupId>org.apache.phoenix</groupId>
 <artifactId>phoenix-spark</artifactId>
 <version>${phoenix.version}</version>
 <scope>provided</scope>
</dependency>

Phoenix Spark Connector Usage Examples
You can refer to the following Phoenix spark connector examples:

• Reading Phoenix tables
• Saving Phoenix tables
• Using PySpark to READ and WRITE tables

Reading Phoenix tables

For example, you have a Phoenix table with the following DDL, you can use one of the following methods to load the
table:

• As a DataFrame using the Data Source API
• As a DataFrame using a configuration object
• As an RDD using a Zookeeper URL

CREATE TABLE TABLE1 (ID BIGINT NOT NULL PRIMARY KEY, COL1 VARCHAR);
UPSERT INTO TABLE1 (ID, COL1) VALUES (1, 'test_row_1');
UPSERT INTO TABLE1 (ID, COL1) VALUES (2, 'test_row_2');

Example: Load a DataFrame using the Data Source API

import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)

val df = sqlContext.load(
 "org.apache.phoenix.spark",
 Map("table" -> "TABLE1", "zkUrl" -> "phoenix-server:2181")
)

df
 .filter(df("COL1") === "test_row_1" && df("ID") === 1L)
 .select(df("ID"))
 .show

Example: Load as a DataFrame directly using a Configuration object

import org.apache.hadoop.conf.Configuration
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val configuration = new Configuration()
// Can set Phoenix-specific settings, requires 'hbase.zookeeper.quorum'

val sc = new SparkContext("local", "phoenix-test")

Apache Phoenix Guide | 13

Understanding Apache Phoenix-Spark Connector

val sqlContext = new SQLContext(sc)

// Loads the columns 'ID' and 'COL1' from TABLE1 as a DataFrame
val df = sqlContext.phoenixTableAsDataFrame(
 "TABLE1", Array("ID", "COL1"), conf = configuration
)

df.show

Example: Load as an RDD using a Zookeeper URL

import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")

// Loads the columns 'ID' and 'COL1' from TABLE1 as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD(
 "TABLE1", Seq("ID", "COL1"), zkUrl = Some("phoenix-server:2181")
)

rdd.count()

val firstId = rdd1.first()("ID").asInstanceOf[Long]
val firstCol = rdd1.first()("COL1").asInstanceOf[String]

Saving Phoenix tables

You can refer to the following examples for saving RDDs and DataFrames.

Example: Saving RDDs

For example, you have a Phoenix table with the following DDL, you can save it as an RDD.

CREATE TABLE OUTPUT_TEST_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2
INTEGER);

The saveToPhoenixmethod is an implicitmethod on RDD[Product], or an RDDof Tuples. The data typesmust correspond
to one of the Java types supported by Phoenix.

import org.apache.spark.SparkContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((1L, "1", 1), (2L, "2", 2), (3L, "3", 3))

sc
 .parallelize(dataSet)
 .saveToPhoenix(
 "OUTPUT_TEST_TABLE",
 Seq("ID","COL1","COL2"),
 zkUrl = Some("phoenix-server:2181")
)

Example: Saving DataFrames

The save is method on DataFrame allows passing in a data source type. You can use org.apache.phoenix.spark, and
must also pass in a table and zkUrl parameter to specify which table and server to persist the DataFrame to. The column
names are derived from the DataFrame’s schema field names, and must match the Phoenix column names. The save
method also takes a SaveMode option, for which only SaveMode.Overwrite is supported. For example, you have a two
Phoenix tables with the following DDL, you can save it as a DataFrames.

Using PySpark to READ and WRITE tables

With Spark’s DataFrame support, you can use pyspark to READ and WRITE from Phoenix tables.

14 | Apache Phoenix Guide

Understanding Apache Phoenix-Spark Connector

https://phoenix.apache.org/language/datatypes.html

Example: Load a DataFrame

Given a table TABLE1 and a Zookeeper url of localhost:2181, you can load the table as a DataFrame using the following
Python code in pyspark:

df = sqlContext.read \
 .format("org.apache.phoenix.spark") \
 .option("table", "TABLE1") \
 .option("zkUrl", "localhost:2181") \
 .load()

Example: Save a DataFrame

Given the same table and Zookeeper URLs above, you can save a DataFrame to a Phoenix table using the following
code:

df.write \
 .format("org.apache.phoenix.spark") \
 .mode("overwrite") \
 .option("table", "TABLE1") \
 .option("zkUrl", "localhost:2181") \
 .save()

Note: The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix all
support optionally specifying a conf Hadoop configuration parameter with custom Phoenix client
settings, as well as an optional zkUrl parameter for the Phoenix connection URL. If zkUrl isn’t
specified, it’s assumed that the hbase.zookeeper.quorum property has been set in the conf
parameter. Similarly, if no configuration is passed in, zkUrlmust be specified.

Apache Phoenix Guide | 15

Understanding Apache Phoenix-Spark Connector

Performance Tuning

You can use the following configuration properties to tune Phoenix to work optimally on your cluster. You can tune
your Phoenix deployment by configuring certain Phoenix specific properties that are configured both on the client and
server side hbase-site.xml files. For a full list of Phoenix Tuning properties that are available, see the Apache Phoenix
tuning guide.

Table 1:

DefaultDescriptionProperty

128The number of threads in client-side
thread pool executor. As the number

phoenix.query.threadPoolSize

of machines/cores in the cluster
grows, this value should be increased.

5000Max queue depth of the bounded
round robin backing the client side

phoenix.query.queueSize

thread pool executor, beyond which
an attempt to queue additional work
is rejected. If zero, a
SynchronousQueue is used instead of
the bounded round-robin queue. The
default value is 5000.

104857600The server-side parameter that
specifies the number of bytes between

phoenix.stats.guidepost.width

guideposts. A smaller amount
increases parallelization, but also
increases the number of chunkswhich
must bemerged on the client side. The
default value is 100 MB.

NoneThe server-side parameter that
specifies the number of guideposts per

phoenix.stats.guidepost.per.region

region. If set to a value greater than
zero, then the guidepost width is
determined by MAX_FILE_SIZE of
table/phoenix
.stats.guidepost.per.region.Otherwise,
if not set, then the
phoenix.stats.guidepost.width
parameter is used. No default value.

900000The server-side parameter that
determines the frequency in

phoenix.stats.updateFrequency

milliseconds for which statistics will
be refreshed from the statistics table
and subsequently used by the client.
The default value is 15 min.

20971520Threshold size in bytes after which
results from parallelly executed query

phoenix.query.spoolThresholdBytes

results are spooled to disk. Default is
20 mb.

16 | Apache Phoenix Guide

Performance Tuning

https://phoenix.apache.org/tuning_guide.html
https://phoenix.apache.org/tuning_guide.html

DefaultDescriptionProperty

1024000000Threshold size in bytes up to which
results from parallelly executed query

phoenix.query.maxSpoolToDiskBytes

results are spooled to disk above
which the query will fail. Default is 1
GB.

15Percentage of total heapmemory (i.e.
Runtime.getRuntime().maxMemory())

phoenix.query.
maxGlobalMemoryPercentage

that all threads may use. Only course
grainmemory usage is tracked,mainly
accounting for memory usage in the
intermediate map built during group
by aggregation. When this limit is
reached, the clients' block attempting
to get more memory, essentially
throttling memory usage. Defaults to
15%

Max size in bytes of total tracked
memory usage. By default it is not

phoenix.query.maxGlobalMemorySize

specified, however, if present, the
lower of this parameter and the
phoenix.query.
maxGlobalMemoryPercentage will be
used.

10000The maximum amount of time that a
client will blockwhilewaiting formore

phoenix.query.
maxGlobalMemoryWaitMs

memory to become available. After
this amount of time, an
InsufficientMemoryException error is
displayed. The default value is 10
seconds.

100Themaximumpercentage of phoenix.
query.maxGlobalMemoryPercentage

phoenix.query.
maxTenantMemoryPercentage

that a tenant is allowed to consume.
After this percentage, an
InsufficientMemoryException error is
displayed. Default is 100%

500000The maximum number of rows that
may be batched on the client before
a commit or rollback must be called.

phoenix.mutate.maxSize

1000The number of rows that are batched
together and automatically committed

phoenix.mutate.batchSize

during the execution of an UPSERT
SELECT or DELETE statement. This
property may be overridden at
connection time by specifying the
UpsertBatchSize property value. Note
that the connection property value
does not affect the batch size used by
the coprocessor when these
statements are executed completely
on the server side.

Apache Phoenix Guide | 17

Performance Tuning

DefaultDescriptionProperty

104857600Maximum size (in bytes) of a single
subquery result (usually the filtered

phoenix.query.maxServerCacheBytes

result of a table) before compression
and conversion to a hash map.
Attempting to hash an intermediate
subquery result of a size bigger than
this setting will result in a
MaxServerCacheSizeExceededException.
Default 100MB.

30000Maximum living time (inmilliseconds)
of server caches. A cache entry expires

phoenix.coprocessor.
maxServerCacheTimeToLiveMs

after this amount of time has passed
since last access. Consider adjusting
this parameter when a server-side
IOException(“Could not find a hash
cache for joinId”) happens. Getting
warnings like “Earlier hash cache(s)
might have expired on servers” might
also be a sign that this number should
be increased.

trueClient-side property determining
whether or not indexes are considered

phoenix.query.useIndexes

by the optimizer to satisfy a query.
Default is true

trueServer-side property determining
whether or not a mutable index is

phoenix.index.failure.handling.rebuild

rebuilt in the background in the event
of a commit failure. Only applicable
for indexes on mutable,
non-transactional tables. Default is
true

102400000Size in bytes of pages cached during
GROUP BY spilling. Default is 100Mb

phoenix.groupby.maxCacheSize

1000Number of estimated distinct values
when a GROUP BY is performed. Used

phoenix.groupby.
estimatedDistinctValues

to perform initial sizing with the
growth of 1.5x each time reallocation
is required. Default is 1000

1024000Size in bytes beyond which aggregate
operations which require tracking

phoenix.distinct.value.compress.
threshold

distinct value counts (such as COUNT
DISTINCT) will use Snappy
compression. Default is 1Mb

50The percentage used to determine the
MAX_FILESIZE for the shared index

phoenix.index.maxDataFileSizePerc

table for views relative to the data
table MAX_FILESIZE. The percentage
should be estimated based on the
anticipated average size of a view

18 | Apache Phoenix Guide

Performance Tuning

DefaultDescriptionProperty

index row versus the data row. Default
is 50%.

180000Time in milliseconds after which the
server-side metadata cache for a

phoenix.coprocessor.
maxMetaDataCacheTimeToLiveMs

tenant will expire if not accessed.
Default is 30mins

20480000Max size in bytes of total server-side
metadata cache after which evictions

phoenix.coprocessor.
maxMetaDataCacheSize

will begin to occur based on least
recent access time. Default is 20Mb

10240000Max size in bytes of total client-side
metadata cache after which evictions

phoenix.client.maxMetaDataCacheSize

will begin to occur based on least
recent access time. Default is 10Mb

100Number of sequence values to reserve
from the server and cache on the

phoenix.sequence.cacheSize

client when the next sequence value
is allocated. Only used if not defined
by the sequence itself. Default is 100

Apache Phoenix Guide | 19

Performance Tuning

Frequently Asked Questions

You can refer to this to this list of questions and answers to understand Apache Phoenix and its deployment.

Can Phoenix be used for ETL use cases?

Yes. Apache Phoenix is used for OLTP (Online Transactional Processing) use cases and not OLAP (Online Analytical
Processing) use cases. Although, you can use Phoenix for real-time data ingest as a primary use case.

What is the typical architecture for a Phoenix deployment?

A typical Phoenix deployment has the following:

• Application
• Phoenix Client/JDBC driver
• HBase client

A Phoenix client/JDBC driver is essentially a Java library that you should include in your Java code. Phoenix uses HBase
as storage similar to how HBase uses HDFS as storage. However, the abstraction for Phoenix is not yet complete, for
example, for implementing access controls, you need to set ACLs on the underlying HBase tables that contain the
Phoenix data.

Are there sizing guidelines for Phoenix JDBC servers?

For Phoenix applications, you must follow the same sizing guidelines that you follow for HBase. For more information
about Phoenix performance tuning, see Performance Tuning on page 16
andhttps://phoenix.apache.org/tuning_guide.html.

Can I govern access to the Phoenix servers?

Yes, you can use Kerberos for authentication. You can configure authorization using HBase authorization.

Can I see the individual cell timestamps in Phoenix tables? Is this something that's commonly used?

You can map HBase’s native row timestamp to a Phoenix column. By doing this, you can take advantage of the various
optimizations that HBase provides for time ranges on the store files as well as various query optimization capabilities
built within Phoenix.

For more information, see https://phoenix.apache.org/rowtimestamp.html

What if the Phoenix index is being built asynchronously and data is added to a table during indexing?

Phoenix does local Indexing for deadlock prevention during global indexmaintenance.: Phoenix also atomically rebuild
index partially when index update fails (PHOENIX-1112).

20 | Apache Phoenix Guide

Frequently Asked Questions

https://phoenix.apache.org/tuning_guide.html
https://phoenix.apache.org/rowtimestamp.html
https://issues.apache.org/jira/browse/PHOENIX-1112

How do sequences work in Phoenix?

Sequences are a standard SQL feature that allows for generating monotonically increasing numbers typically used to
form an ID.

For more information, see https://phoenix.apache.org/sequences.html.

What happens to a Phoenix write when a RegionServer fails?

Writes are durable and durability is defined by a WRITE that is committed to disk (in the Write Ahead Log). So in case
of a RegionServer failure, the write is recoverable by replaying the WAL. A “complete” write is one that has been
flushed from the WAL to an HFile. Any failures will be represented as exceptions.

Can I do bulk data loads in Phoenix?

Yes, you can do bulk inserts in Phoenix. For more information see https://phoenix.apache.org/bulk_dataload.html.

Can I access a table created by Phoenix using the standard HBase API?

Yes, but is it is not recommended or supported. Data is encoded by Phoenix, so you have to decode the data for reading.
Writing to the HBase tables directly would result in corruption in Phoenix.

Can I map a Phoenix table over an existing HBase table?

Yes, as long as Phoenix data types are used. You have to use asynchronous indexes and manually update them since
Phoenix won’t be aware of any updates.

What are guideposts?

For information about guideposts, see https://phoenix.apache.org/update_statistics.html.

Apache Phoenix Guide | 21

Frequently Asked Questions

https://phoenix.apache.org/sequences.html
https://phoenix.apache.org/bulk_dataload.html
https://phoenix.apache.org/update_statistics.html

Uninstalling Phoenix Parcel

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you want to stop using Phoenix and want to remove the Phoenix parcel completely, you must follow these steps in
Cloudera Manager:

Important: Before you uninstall the Phoenix parcel, you must disable all your Phoenix system tables,
and tables created using Phoenix.

1. Revert the configurations that you set in the Configure HBase for use with Phoenix section.
2. Restart the HBase service.
3. From the Parcels page, in the Location selector, choose the cluster from which you want to uninstall Phoenix. For

example, Cluster 1.
4. In the row that has the parcel name Phoenix, click Deactivate. The Deactivate confirmation window appears.
5. Click Deactivate.
6. Restart the HBase service.

22 | Apache Phoenix Guide

Uninstalling Phoenix Parcel

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 23

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

24 | Cloudera

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 25

Appendix: Apache License, Version 2.0

	Table of Contents
	Release Notes
	Prerequisites
	Installing Apache Phoenix using Cloudera Manager
	Downloading and Installing the Phoenix Parcel
	Configuring HBase for use with Phoenix
	Validating the Phoenix Installation

	Using Phoenix to Store and Access Data
	Orchestrating SQL and APIs with Apache Phoenix
	Creating and Using User-Defined Functions (UDFs) in Phoenix
	Mapping Phoenix Schemas to HBase Namespaces
	Associating Tables of a Schema to a Namespace
	Using Phoenix Client to Load Data
	Using the Index in Phoenix

	Understanding Apache Phoenix-Spark Connector
	Configure Phoenix-Spark Connector using Cloudera Manager
	Phoenix Spark Connector Usage Examples

	Performance Tuning
	Frequently Asked Questions
	Uninstalling Phoenix Parcel
	Appendix: Apache License, Version 2.0

